Johan713 commited on
Commit
278cb18
·
verified ·
1 Parent(s): dfc4ebf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +78 -179
app.py CHANGED
@@ -36,183 +36,80 @@ COMPANIES = [
36
  ]
37
 
38
  class StockPredictor:
39
- def __init__(self, data, model_type='Prophet'):
40
  self.data = data
41
- self.model_type = model_type
42
  self.model = None
43
- self.scaler = None
44
- self.lstm_scaler = None
45
 
46
  def preprocess_data(self):
47
- self.data['Date'] = pd.to_datetime(self.data.index)
48
- self.data = self.data.reset_index(drop=True)
49
-
50
- # Enhanced Feature Engineering
51
- self.data['DayOfWeek'] = self.data['Date'].dt.dayofweek
52
- self.data['Month'] = self.data['Date'].dt.month
53
- self.data['Year'] = self.data['Date'].dt.year
54
- self.data['IsMonthEnd'] = self.data['Date'].dt.is_month_end.astype(int)
55
-
56
- # Technical Indicators
57
- self.data['SMA_20'] = SMAIndicator(close=self.data['Close'], window=20).sma_indicator()
58
- self.data['EMA_20'] = EMAIndicator(close=self.data['Close'], window=20).ema_indicator()
59
- self.data['RSI'] = RSIIndicator(close=self.data['Close']).rsi()
60
- bb = BollingerBands(close=self.data['Close'], window=20, window_dev=2)
61
- self.data['BB_High'] = bb.bollinger_hband()
62
- self.data['BB_Low'] = bb.bollinger_lband()
63
 
64
- # Log returns
65
- self.data['LogReturn'] = np.log(self.data['Close'] / self.data['Close'].shift(1))
66
-
67
- # Handle NaN values
68
- self.data.dropna(inplace=True)
69
-
70
- # Define features for the model
71
- self.features = ['Open', 'High', 'Low', 'Close', 'Volume', 'SMA_20', 'EMA_20', 'RSI', 'BB_High', 'BB_Low', 'LogReturn', 'DayOfWeek', 'Month', 'Year', 'IsMonthEnd']
72
-
73
- # Apply scaling for XGBoost and RandomForest
74
- if self.model_type in ['XGBoost', 'RandomForest']:
75
- self.scaler = StandardScaler()
76
- self.data[self.features] = self.scaler.fit_transform(self.data[self.features])
77
-
78
- # Additional preprocessing for LSTM
79
- if self.model_type == 'LSTM':
80
- self.lstm_scaler = MinMaxScaler(feature_range=(0, 1))
81
- self.data['Scaled_Close'] = self.lstm_scaler.fit_transform(self.data[['Close']])
82
 
83
- def create_lstm_dataset(self, look_back=60):
84
- scaled_data = self.data['Scaled_Close'].values
85
- x, y = [], []
86
- for i in range(look_back, len(scaled_data)):
87
- x.append(scaled_data[i-look_back:i])
88
- y.append(scaled_data[i])
89
- return np.array(x), np.array(y)
90
 
91
  def train_model(self):
92
  try:
93
- if self.model_type == 'LSTM':
94
- x, y = self.create_lstm_dataset()
95
- x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, shuffle=False)
96
-
97
- model = Sequential([
98
- LSTM(50, return_sequences=True, input_shape=(x_train.shape[1], 1)),
99
- LSTM(50, return_sequences=False),
100
- Dense(25),
101
- Dense(1)
102
- ])
103
-
104
- model.compile(optimizer=Adam(learning_rate=0.001), loss='mean_squared_error')
105
- model.fit(x_train, y_train, epochs=50, batch_size=32, validation_data=(x_test, y_test), verbose=0)
106
-
107
- self.model = model
108
-
109
- elif self.model_type == 'SARIMA':
110
- train_data = self.data['Close']
111
- # Use auto_arima to find optimal parameters
112
- from pmdarima import auto_arima
113
- auto_model = auto_arima(train_data, start_p=1, start_q=1, max_p=3, max_q=3, m=12,
114
- start_P=0, seasonal=True, d=1, D=1, trace=True,
115
- error_action='ignore', suppress_warnings=True, stepwise=True)
116
-
117
- self.model = SARIMAX(train_data, order=auto_model.order, seasonal_order=auto_model.seasonal_order)
118
- self.model = self.model.fit(disp=False)
119
-
120
- elif self.model_type == 'Prophet':
121
- df = self.data[['Date', 'Close']].rename(columns={'Date': 'ds', 'Close': 'y'})
122
- self.model = Prophet(
123
- changepoint_prior_scale=0.05,
124
- seasonality_prior_scale=10,
125
- holidays_prior_scale=10,
126
- daily_seasonality=True,
127
- weekly_seasonality=True,
128
- yearly_seasonality=True
129
- )
130
- for feature in ['SMA_20', 'EMA_20', 'RSI', 'BB_High', 'BB_Low']:
131
- self.model.add_regressor(feature)
132
- df[feature] = self.data[feature]
133
- self.model.fit(df)
134
-
135
- elif self.model_type == 'XGBoost':
136
- X = self.data[self.features]
137
- y = self.data['Close']
138
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False)
139
-
140
- param_grid = {
141
- 'max_depth': [3, 5],
142
- 'learning_rate': [0.01, 0.1],
143
- 'n_estimators': [100, 200]
144
- }
145
- model = xgb.XGBRegressor(objective='reg:squarederror')
146
- grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=3, n_jobs=-1, verbose=0)
147
- grid_search.fit(X_train, y_train)
148
-
149
- self.model = grid_search.best_estimator_
150
-
151
- elif self.model_type == 'RandomForest':
152
- X = self.data[self.features]
153
- y = self.data['Close']
154
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False)
155
-
156
- param_grid = {
157
- 'n_estimators': [100, 200],
158
- 'max_depth': [10, 20]
159
- }
160
- model = RandomForestRegressor(random_state=42)
161
- grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=3, n_jobs=-1, verbose=0)
162
- grid_search.fit(X_train, y_train)
163
-
164
- self.model = grid_search.best_estimator_
165
-
166
  return True
167
-
168
  except Exception as e:
169
- print(f"Error training {self.model_type} model: {str(e)}")
170
  return False
171
 
172
  def predict(self, days=30):
173
  try:
174
- if self.model_type == 'LSTM':
175
- last_sequence = self.data['Scaled_Close'].values[-60:].reshape(1, 60, 1)
176
- predictions = []
177
- for _ in range(days):
178
- pred = self.model.predict(last_sequence)
179
- predictions.append(pred[0, 0])
180
- last_sequence = np.roll(last_sequence, -1, axis=1)
181
- last_sequence[0, -1, 0] = pred[0, 0]
182
- return self.lstm_scaler.inverse_transform(np.array(predictions).reshape(-1, 1)).flatten()
183
-
184
- elif self.model_type == 'SARIMA':
185
- forecast = self.model.get_forecast(steps=days)
186
- return forecast.predicted_mean.values
187
-
188
- elif self.model_type == 'Prophet':
189
- future = self.model.make_future_dataframe(periods=days)
190
- for feature in ['SMA_20', 'EMA_20', 'RSI', 'BB_High', 'BB_Low']:
191
- future[feature] = self.data[feature].iloc[-1] # Use last known value
192
- forecast = self.model.predict(future)
193
- return forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']][-days:]
194
-
195
- elif self.model_type in ['XGBoost', 'RandomForest']:
196
- last_data = self.data[self.features].iloc[-1:].values
197
- predictions = []
198
- for _ in range(days):
199
- pred = self.model.predict(last_data)
200
- predictions.append(pred[0])
201
- # Update last_data for next prediction
202
- last_data = np.roll(last_data, -1, axis=1)
203
- last_data[0, -5] = pred[0] # Assuming 'Close' is the 5th from last feature
204
- return np.array(predictions)
205
-
206
  except Exception as e:
207
- print(f"Error predicting with {self.model_type} model: {str(e)}")
208
  return None
209
 
210
- def evaluate_model(self, test_data):
211
- predictions = self.predict(len(test_data))
212
- mse = mean_squared_error(test_data['Close'], predictions)
213
- mape = mean_absolute_percentage_error(test_data['Close'], predictions)
214
- rmse = np.sqrt(mse)
215
- return mse, mape, rmse
 
 
 
 
 
 
 
 
216
 
217
  def fetch_stock_data(ticker):
218
  try:
@@ -349,7 +246,7 @@ def main():
349
  predict_stock_prices()
350
 
351
  def test_model():
352
- st.header("Test Stock Prediction Model")
353
 
354
  col1, col2 = st.columns(2)
355
 
@@ -357,9 +254,6 @@ def test_model():
357
  company = st.selectbox("Select Company", [company for company, _ in COMPANIES])
358
  test_split = st.slider("Test Data Split", 0.1, 0.5, 0.2, 0.05)
359
 
360
- with col2:
361
- model_type = st.selectbox("Select Model Type", ['Prophet', 'LSTM', 'SARIMA', 'XGBoost', 'RandomForest'])
362
-
363
  if st.button("Train and Test Model"):
364
  with st.spinner("Fetching data and training model..."):
365
  company_name, ticker = next((name, symbol) for name, symbol in COMPANIES if name == company)
@@ -378,24 +272,30 @@ def test_model():
378
  train_data = data.iloc[:split_index]
379
  test_data = data.iloc[split_index:]
380
 
381
- predictor = StockPredictor(train_data, model_type) # Updated: added model_type argument
382
  predictor.preprocess_data()
383
  if predictor.train_model():
384
  test_pred = predictor.predict(days=len(test_data))
385
 
386
  if test_pred is not None:
387
  mse, mape, rmse = predictor.evaluate_model(test_data)
388
- accuracy = 100 - mape * 100
389
-
390
- st.subheader("Model Performance")
391
- st.metric("Prediction Accuracy", f"{accuracy:.2f}%")
392
- st.metric("Mean Squared Error", f"{mse:.4f}")
393
- st.metric("Root Mean Squared Error", f"{rmse:.4f}")
394
-
395
- plot = create_test_plot(predictor.data, test_data, test_pred, company_name)
396
- st.plotly_chart(plot, use_container_width=True)
 
 
 
 
 
 
397
  else:
398
- st.error(f"Failed to train the {model_type} model. Please try a different dataset or model type.")
399
 
400
  def predict_stock_prices():
401
  st.header("Predict Stock Prices")
@@ -406,9 +306,6 @@ def predict_stock_prices():
406
  company = st.selectbox("Select Company", [company for company, _ in COMPANIES])
407
  days_to_predict = st.slider("Days to Predict", 1, 365, 30)
408
 
409
- with col2:
410
- model_type = st.selectbox("Select Model Type", ['Prophet', 'LSTM', 'SARIMA', 'XGBoost', 'RandomForest'])
411
-
412
  if st.button("Predict Stock Prices"):
413
  with st.spinner("Fetching data and making predictions..."):
414
  company_name, ticker = next((name, symbol) for name, symbol in COMPANIES if name == company)
@@ -423,7 +320,7 @@ def predict_stock_prices():
423
 
424
  st.markdown(get_table_download_link(data), unsafe_allow_html=True)
425
 
426
- predictor = StockPredictor(data, model_type) # Updated: added model_type argument
427
  predictor.preprocess_data()
428
  if predictor.train_model():
429
  predictions = predictor.predict(days=days_to_predict)
@@ -444,8 +341,10 @@ def predict_stock_prices():
444
  st.subheader("Latest News")
445
  for item in news:
446
  st.markdown(f"[{item['title']}]({item['link']}) ({item['pubDate']})")
 
 
447
  else:
448
- st.error(f"Failed to train the {model_type} model. Please try a different dataset or model type.")
449
 
450
  def explore_data():
451
  st.header("Explore Stock Data")
 
36
  ]
37
 
38
  class StockPredictor:
39
+ def __init__(self, data):
40
  self.data = data
 
41
  self.model = None
 
 
42
 
43
  def preprocess_data(self):
44
+ # Prophet requires columns named 'ds' and 'y'
45
+ self.data = self.data.reset_index()
46
+ self.data = self.data.rename(columns={'Date': 'ds', 'Close': 'y'})
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
+ # Add any additional features you want to use
49
+ self.data['SMA_20'] = self.data['y'].rolling(window=20).mean()
50
+ self.data['EMA_20'] = self.data['y'].ewm(span=20, adjust=False).mean()
51
+ self.data['RSI'] = self.calculate_rsi(self.data['y'], periods=14)
52
+
53
+ # Handle NaN values
54
+ self.data = self.data.dropna()
 
 
 
 
 
 
 
 
 
 
 
55
 
56
+ def calculate_rsi(self, prices, periods=14):
57
+ delta = prices.diff()
58
+ gain = (delta.where(delta > 0, 0)).rolling(window=periods).mean()
59
+ loss = (-delta.where(delta < 0, 0)).rolling(window=periods).mean()
60
+ rs = gain / loss
61
+ return 100 - (100 / (1 + rs))
 
62
 
63
  def train_model(self):
64
  try:
65
+ self.model = Prophet(
66
+ changepoint_prior_scale=0.05,
67
+ seasonality_prior_scale=10,
68
+ holidays_prior_scale=10,
69
+ daily_seasonality=True,
70
+ weekly_seasonality=True,
71
+ yearly_seasonality=True
72
+ )
73
+
74
+ # Add additional regressors
75
+ self.model.add_regressor('SMA_20')
76
+ self.model.add_regressor('EMA_20')
77
+ self.model.add_regressor('RSI')
78
+
79
+ self.model.fit(self.data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
  return True
 
81
  except Exception as e:
82
+ print(f"Error training Prophet model: {str(e)}")
83
  return False
84
 
85
  def predict(self, days=30):
86
  try:
87
+ future = self.model.make_future_dataframe(periods=days)
88
+
89
+ # Add regressor values for future dates
90
+ for feature in ['SMA_20', 'EMA_20', 'RSI']:
91
+ future[feature] = self.data[feature].iloc[-1] # Use last known value
92
+
93
+ forecast = self.model.predict(future)
94
+ return forecast
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
  except Exception as e:
96
+ print(f"Error predicting with Prophet model: {str(e)}")
97
  return None
98
 
99
+ def evaluate_model(self, test_data):
100
+ predictions = self.predict(days=len(test_data))
101
+
102
+ if predictions is None:
103
+ return None, None, None
104
+
105
+ actual = test_data['Close'].values
106
+ predicted = predictions['yhat'].values[-len(test_data):]
107
+
108
+ mse = mean_squared_error(actual, predicted)
109
+ mape = mean_absolute_percentage_error(actual, predicted)
110
+ rmse = np.sqrt(mse)
111
+
112
+ return mse, mape, rmse
113
 
114
  def fetch_stock_data(ticker):
115
  try:
 
246
  predict_stock_prices()
247
 
248
  def test_model():
249
+ st.header("Test Prophet Model")
250
 
251
  col1, col2 = st.columns(2)
252
 
 
254
  company = st.selectbox("Select Company", [company for company, _ in COMPANIES])
255
  test_split = st.slider("Test Data Split", 0.1, 0.5, 0.2, 0.05)
256
 
 
 
 
257
  if st.button("Train and Test Model"):
258
  with st.spinner("Fetching data and training model..."):
259
  company_name, ticker = next((name, symbol) for name, symbol in COMPANIES if name == company)
 
272
  train_data = data.iloc[:split_index]
273
  test_data = data.iloc[split_index:]
274
 
275
+ predictor = StockPredictor(train_data)
276
  predictor.preprocess_data()
277
  if predictor.train_model():
278
  test_pred = predictor.predict(days=len(test_data))
279
 
280
  if test_pred is not None:
281
  mse, mape, rmse = predictor.evaluate_model(test_data)
282
+
283
+ if mse is not None and mape is not None and rmse is not None:
284
+ accuracy = 100 - mape * 100
285
+
286
+ st.subheader("Model Performance")
287
+ st.metric("Prediction Accuracy", f"{accuracy:.2f}%")
288
+ st.metric("Mean Squared Error", f"{mse:.4f}")
289
+ st.metric("Root Mean Squared Error", f"{rmse:.4f}")
290
+
291
+ plot = create_test_plot(predictor.data, test_data, test_pred, company_name)
292
+ st.plotly_chart(plot, use_container_width=True)
293
+ else:
294
+ st.error("Failed to evaluate the model. The evaluation metrics are None.")
295
+ else:
296
+ st.error("Failed to generate predictions. The predicted data is None.")
297
  else:
298
+ st.error("Failed to train the Prophet model. Please try a different dataset.")
299
 
300
  def predict_stock_prices():
301
  st.header("Predict Stock Prices")
 
306
  company = st.selectbox("Select Company", [company for company, _ in COMPANIES])
307
  days_to_predict = st.slider("Days to Predict", 1, 365, 30)
308
 
 
 
 
309
  if st.button("Predict Stock Prices"):
310
  with st.spinner("Fetching data and making predictions..."):
311
  company_name, ticker = next((name, symbol) for name, symbol in COMPANIES if name == company)
 
320
 
321
  st.markdown(get_table_download_link(data), unsafe_allow_html=True)
322
 
323
+ predictor = StockPredictor(data)
324
  predictor.preprocess_data()
325
  if predictor.train_model():
326
  predictions = predictor.predict(days=days_to_predict)
 
341
  st.subheader("Latest News")
342
  for item in news:
343
  st.markdown(f"[{item['title']}]({item['link']}) ({item['pubDate']})")
344
+ else:
345
+ st.error("Failed to generate predictions. The predicted data is None.")
346
  else:
347
+ st.error("Failed to train the Prophet model. Please try a different dataset.")
348
 
349
  def explore_data():
350
  st.header("Explore Stock Data")