Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import yfinance as yf
|
5 |
+
import plotly.graph_objects as go
|
6 |
+
from plotly.subplots import make_subplots
|
7 |
+
import plotly.express as px
|
8 |
+
from datetime import datetime, timedelta
|
9 |
+
from statsmodels.tsa.statespace.sarimax import SARIMAX
|
10 |
+
from prophet import Prophet
|
11 |
+
from sklearn.ensemble import RandomForestRegressor
|
12 |
+
import xgboost as xgb
|
13 |
+
from sklearn.preprocessing import StandardScaler, MinMaxScaler
|
14 |
+
from keras.models import Sequential
|
15 |
+
from keras.optimizers import Adam
|
16 |
+
from keras.layers import Dense, LSTM
|
17 |
+
from sklearn.model_selection import train_test_split, TimeSeriesSplit
|
18 |
+
from sklearn.metrics import mean_squared_error, mean_absolute_percentage_error
|
19 |
+
import requests
|
20 |
+
from bs4 import BeautifulSoup
|
21 |
+
import base64
|
22 |
+
import warnings
|
23 |
+
from ta.trend import SMAIndicator, EMAIndicator
|
24 |
+
from ta.momentum import RSIIndicator
|
25 |
+
from ta.volatility import BollingerBands
|
26 |
+
from pmdarima import auto_arima
|
27 |
+
warnings.filterwarnings('ignore')
|
28 |
+
|
29 |
+
# List of companies (display name, ticker symbol)
|
30 |
+
COMPANIES = [
|
31 |
+
("Apple", "AAPL"), ("Microsoft", "MSFT"), ("Amazon", "AMZN"), ("Google", "GOOGL"),
|
32 |
+
("Facebook", "FB"), ("Tesla", "TSLA"), ("NVIDIA", "NVDA"), ("JPMorgan Chase", "JPM"),
|
33 |
+
("Johnson & Johnson", "JNJ"), ("Visa", "V"), ("Procter & Gamble", "PG"), ("UnitedHealth", "UNH"),
|
34 |
+
("Home Depot", "HD"), ("Mastercard", "MA"), ("Bank of America", "BAC"), ("Disney", "DIS"),
|
35 |
+
("Netflix", "NFLX"), ("Coca-Cola", "KO"), ("Pepsi", "PEP"), ("Adobe", "ADBE")
|
36 |
+
]
|
37 |
+
|
38 |
+
class StockPredictor:
|
39 |
+
def __init__(self, data, model_type):
|
40 |
+
self.data = data
|
41 |
+
self.model_type = model_type
|
42 |
+
self.model = None
|
43 |
+
self.scaler = None
|
44 |
+
self.lstm_scaler = None
|
45 |
+
|
46 |
+
def preprocess_data(self):
|
47 |
+
self.data['Date'] = pd.to_datetime(self.data.index)
|
48 |
+
self.data = self.data.reset_index(drop=True)
|
49 |
+
|
50 |
+
# Enhanced Feature Engineering
|
51 |
+
self.data['DayOfWeek'] = self.data['Date'].dt.dayofweek
|
52 |
+
self.data['Month'] = self.data['Date'].dt.month
|
53 |
+
self.data['Year'] = self.data['Date'].dt.year
|
54 |
+
self.data['IsMonthEnd'] = self.data['Date'].dt.is_month_end.astype(int)
|
55 |
+
|
56 |
+
# Technical Indicators
|
57 |
+
self.data['SMA_20'] = SMAIndicator(close=self.data['Close'], window=20).sma_indicator()
|
58 |
+
self.data['EMA_20'] = EMAIndicator(close=self.data['Close'], window=20).ema_indicator()
|
59 |
+
self.data['RSI'] = RSIIndicator(close=self.data['Close']).rsi()
|
60 |
+
bb = BollingerBands(close=self.data['Close'], window=20, window_dev=2)
|
61 |
+
self.data['BB_High'] = bb.bollinger_hband()
|
62 |
+
self.data['BB_Low'] = bb.bollinger_lband()
|
63 |
+
|
64 |
+
# Log returns
|
65 |
+
self.data['LogReturn'] = np.log(self.data['Close'] / self.data['Close'].shift(1))
|
66 |
+
|
67 |
+
# Handle NaN values
|
68 |
+
self.data.dropna(inplace=True)
|
69 |
+
|
70 |
+
# Define features for the model
|
71 |
+
self.features = ['Open', 'High', 'Low', 'Close', 'Volume', 'SMA_20', 'EMA_20', 'RSI', 'BB_High', 'BB_Low', 'LogReturn', 'DayOfWeek', 'Month', 'Year', 'IsMonthEnd']
|
72 |
+
|
73 |
+
# Apply scaling for XGBoost and RandomForest
|
74 |
+
if self.model_type in ['XGBoost', 'RandomForest']:
|
75 |
+
self.scaler = StandardScaler()
|
76 |
+
self.data[self.features] = self.scaler.fit_transform(self.data[self.features])
|
77 |
+
|
78 |
+
# Additional preprocessing for LSTM
|
79 |
+
if self.model_type == 'LSTM':
|
80 |
+
self.lstm_scaler = MinMaxScaler(feature_range=(0, 1))
|
81 |
+
self.data['Scaled_Close'] = self.lstm_scaler.fit_transform(self.data[['Close']])
|
82 |
+
|
83 |
+
def create_lstm_dataset(self, look_back=60):
|
84 |
+
scaled_data = self.data['Scaled_Close'].values
|
85 |
+
x, y = [], []
|
86 |
+
for i in range(look_back, len(scaled_data)):
|
87 |
+
x.append(scaled_data[i-look_back:i])
|
88 |
+
y.append(scaled_data[i])
|
89 |
+
return np.array(x), np.array(y)
|
90 |
+
|
91 |
+
def train_model(self):
|
92 |
+
try:
|
93 |
+
if self.model_type == 'LSTM':
|
94 |
+
x, y = self.create_lstm_dataset()
|
95 |
+
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, shuffle=False)
|
96 |
+
|
97 |
+
model = Sequential([
|
98 |
+
LSTM(50, return_sequences=True, input_shape=(x_train.shape[1], 1)),
|
99 |
+
LSTM(50, return_sequences=False),
|
100 |
+
Dense(25),
|
101 |
+
Dense(1)
|
102 |
+
])
|
103 |
+
|
104 |
+
model.compile(optimizer=Adam(learning_rate=0.001), loss='mean_squared_error')
|
105 |
+
model.fit(x_train, y_train, epochs=50, batch_size=32, validation_data=(x_test, y_test), verbose=0)
|
106 |
+
|
107 |
+
self.model = model
|
108 |
+
|
109 |
+
elif self.model_type == 'SARIMA':
|
110 |
+
train_data = self.data['Close']
|
111 |
+
# Use auto_arima to find optimal parameters
|
112 |
+
from pmdarima import auto_arima
|
113 |
+
auto_model = auto_arima(train_data, start_p=1, start_q=1, max_p=3, max_q=3, m=12,
|
114 |
+
start_P=0, seasonal=True, d=1, D=1, trace=True,
|
115 |
+
error_action='ignore', suppress_warnings=True, stepwise=True)
|
116 |
+
|
117 |
+
self.model = SARIMAX(train_data, order=auto_model.order, seasonal_order=auto_model.seasonal_order)
|
118 |
+
self.model = self.model.fit(disp=False)
|
119 |
+
|
120 |
+
elif self.model_type == 'Prophet':
|
121 |
+
df = self.data[['Date', 'Close']].rename(columns={'Date': 'ds', 'Close': 'y'})
|
122 |
+
self.model = Prophet(
|
123 |
+
changepoint_prior_scale=0.05,
|
124 |
+
seasonality_prior_scale=10,
|
125 |
+
holidays_prior_scale=10,
|
126 |
+
daily_seasonality=True,
|
127 |
+
weekly_seasonality=True,
|
128 |
+
yearly_seasonality=True
|
129 |
+
)
|
130 |
+
for feature in ['SMA_20', 'EMA_20', 'RSI', 'BB_High', 'BB_Low']:
|
131 |
+
self.model.add_regressor(feature)
|
132 |
+
df[feature] = self.data[feature]
|
133 |
+
self.model.fit(df)
|
134 |
+
|
135 |
+
elif self.model_type == 'XGBoost':
|
136 |
+
X = self.data[self.features]
|
137 |
+
y = self.data['Close']
|
138 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False)
|
139 |
+
|
140 |
+
param_grid = {
|
141 |
+
'max_depth': [3, 5],
|
142 |
+
'learning_rate': [0.01, 0.1],
|
143 |
+
'n_estimators': [100, 200]
|
144 |
+
}
|
145 |
+
model = xgb.XGBRegressor(objective='reg:squarederror')
|
146 |
+
grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=3, n_jobs=-1, verbose=0)
|
147 |
+
grid_search.fit(X_train, y_train)
|
148 |
+
|
149 |
+
self.model = grid_search.best_estimator_
|
150 |
+
|
151 |
+
elif self.model_type == 'RandomForest':
|
152 |
+
X = self.data[self.features]
|
153 |
+
y = self.data['Close']
|
154 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False)
|
155 |
+
|
156 |
+
param_grid = {
|
157 |
+
'n_estimators': [100, 200],
|
158 |
+
'max_depth': [10, 20]
|
159 |
+
}
|
160 |
+
model = RandomForestRegressor(random_state=42)
|
161 |
+
grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=3, n_jobs=-1, verbose=0)
|
162 |
+
grid_search.fit(X_train, y_train)
|
163 |
+
|
164 |
+
self.model = grid_search.best_estimator_
|
165 |
+
|
166 |
+
return True
|
167 |
+
|
168 |
+
except Exception as e:
|
169 |
+
print(f"Error training {self.model_type} model: {str(e)}")
|
170 |
+
return False
|
171 |
+
|
172 |
+
def predict(self, days=30):
|
173 |
+
try:
|
174 |
+
if self.model_type == 'LSTM':
|
175 |
+
last_sequence = self.data['Scaled_Close'].values[-60:].reshape(1, 60, 1)
|
176 |
+
predictions = []
|
177 |
+
for _ in range(days):
|
178 |
+
pred = self.model.predict(last_sequence)
|
179 |
+
predictions.append(pred[0, 0])
|
180 |
+
last_sequence = np.roll(last_sequence, -1, axis=1)
|
181 |
+
last_sequence[0, -1, 0] = pred[0, 0]
|
182 |
+
return self.lstm_scaler.inverse_transform(np.array(predictions).reshape(-1, 1)).flatten()
|
183 |
+
|
184 |
+
elif self.model_type == 'SARIMA':
|
185 |
+
forecast = self.model.get_forecast(steps=days)
|
186 |
+
return forecast.predicted_mean
|
187 |
+
|
188 |
+
elif self.model_type == 'Prophet':
|
189 |
+
future = self.model.make_future_dataframe(periods=days)
|
190 |
+
for feature in ['SMA_20', 'EMA_20', 'RSI', 'BB_High', 'BB_Low']:
|
191 |
+
future[feature] = self.data[feature].iloc[-1] # Use last known value
|
192 |
+
forecast = self.model.predict(future)
|
193 |
+
return forecast['yhat'][-days:].values
|
194 |
+
|
195 |
+
elif self.model_type in ['XGBoost', 'RandomForest']:
|
196 |
+
last_data = self.data[self.features].iloc[-1:].values
|
197 |
+
predictions = []
|
198 |
+
for _ in range(days):
|
199 |
+
pred = self.model.predict(last_data)
|
200 |
+
predictions.append(pred[0])
|
201 |
+
# Update last_data for next prediction
|
202 |
+
last_data = np.roll(last_data, -1, axis=1)
|
203 |
+
last_data[0, -5] = pred[0] # Assuming 'Close' is the 5th from last feature
|
204 |
+
return predictions
|
205 |
+
|
206 |
+
except Exception as e:
|
207 |
+
print(f"Error predicting with {self.model_type} model: {str(e)}")
|
208 |
+
return None
|
209 |
+
|
210 |
+
def evaluate_model(self, test_data):
|
211 |
+
predictions = self.predict(len(test_data))
|
212 |
+
mse = mean_squared_error(test_data['Close'], predictions)
|
213 |
+
mape = mean_absolute_percentage_error(test_data['Close'], predictions)
|
214 |
+
rmse = np.sqrt(mse)
|
215 |
+
return mse, mape, rmse
|
216 |
+
|
217 |
+
def fetch_stock_data(ticker):
|
218 |
+
try:
|
219 |
+
end_date = datetime.now()
|
220 |
+
start_date = datetime(2000, 1, 1)
|
221 |
+
data = yf.download(ticker, start=start_date, end=end_date)
|
222 |
+
return data
|
223 |
+
except Exception as e:
|
224 |
+
st.error(f"Error fetching data for {ticker}: {str(e)}")
|
225 |
+
return None
|
226 |
+
|
227 |
+
def create_test_plot(train_data, test_data, predicted_data, company_name):
|
228 |
+
fig = go.Figure()
|
229 |
+
|
230 |
+
fig.add_trace(go.Scatter(
|
231 |
+
x=train_data.index,
|
232 |
+
y=train_data['Close'],
|
233 |
+
mode='lines',
|
234 |
+
name='Training Data',
|
235 |
+
line=dict(color='blue')
|
236 |
+
))
|
237 |
+
|
238 |
+
fig.add_trace(go.Scatter(
|
239 |
+
x=test_data.index,
|
240 |
+
y=test_data['Close'],
|
241 |
+
mode='lines',
|
242 |
+
name='Actual (Test) Data',
|
243 |
+
line=dict(color='green')
|
244 |
+
))
|
245 |
+
|
246 |
+
if predicted_data is not None:
|
247 |
+
fig.add_trace(go.Scatter(
|
248 |
+
x=test_data.index, # Align predicted data with test data
|
249 |
+
y=predicted_data['yhat'][-len(test_data):],
|
250 |
+
mode='lines',
|
251 |
+
name='Predicted Data',
|
252 |
+
line=dict(color='red', dash='dash')
|
253 |
+
))
|
254 |
+
|
255 |
+
fig.update_layout(
|
256 |
+
title=f'{company_name} Stock Price Prediction (Test Model)',
|
257 |
+
xaxis_title='Date',
|
258 |
+
yaxis_title='Close Price',
|
259 |
+
template='plotly_dark',
|
260 |
+
hovermode='x unified',
|
261 |
+
xaxis_rangeslider_visible=True,
|
262 |
+
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
|
263 |
+
)
|
264 |
+
return fig
|
265 |
+
|
266 |
+
def create_prediction_plot(data, predicted_data, company_name):
|
267 |
+
fig = go.Figure()
|
268 |
+
|
269 |
+
fig.add_trace(go.Scatter(
|
270 |
+
x=data.index,
|
271 |
+
y=data['Close'],
|
272 |
+
mode='lines',
|
273 |
+
name='Historical Data',
|
274 |
+
line=dict(color='cyan')
|
275 |
+
))
|
276 |
+
|
277 |
+
if predicted_data is not None:
|
278 |
+
future_dates = pd.date_range(start=data.index[-1] + pd.Timedelta(days=1), periods=len(predicted_data))
|
279 |
+
fig.add_trace(go.Scatter(
|
280 |
+
x=future_dates,
|
281 |
+
y=predicted_data['yhat'],
|
282 |
+
mode='lines',
|
283 |
+
name='Predicted Data',
|
284 |
+
line=dict(color='yellow')
|
285 |
+
))
|
286 |
+
|
287 |
+
fig.update_layout(
|
288 |
+
title=f'{company_name} Stock Price Prediction',
|
289 |
+
xaxis_title='Date',
|
290 |
+
yaxis_title='Close Price',
|
291 |
+
template='plotly_dark',
|
292 |
+
hovermode='x unified',
|
293 |
+
xaxis_rangeslider_visible=True,
|
294 |
+
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
|
295 |
+
)
|
296 |
+
return fig
|
297 |
+
|
298 |
+
def create_candlestick_plot(data, company_name):
|
299 |
+
fig = go.Figure(data=[go.Candlestick(x=data.index,
|
300 |
+
open=data['Open'],
|
301 |
+
high=data['High'],
|
302 |
+
low=data['Low'],
|
303 |
+
close=data['Close'])])
|
304 |
+
fig.update_layout(
|
305 |
+
title=f'{company_name} Stock Price Candlestick Chart',
|
306 |
+
xaxis_title='Date',
|
307 |
+
yaxis_title='Price',
|
308 |
+
template='plotly_dark',
|
309 |
+
xaxis_rangeslider_visible=True
|
310 |
+
)
|
311 |
+
return fig
|
312 |
+
|
313 |
+
def fetch_news(company_name):
|
314 |
+
try:
|
315 |
+
url = f"https://news.google.com/rss/search?q={company_name}+stock&hl=en-US&gl=US&ceid=US:en"
|
316 |
+
response = requests.get(url)
|
317 |
+
soup = BeautifulSoup(response.content, features='xml')
|
318 |
+
news_items = soup.findAll('item')
|
319 |
+
|
320 |
+
news = []
|
321 |
+
for item in news_items[:5]:
|
322 |
+
news.append({
|
323 |
+
'title': item.title.text,
|
324 |
+
'link': item.link.text,
|
325 |
+
'pubDate': item.pubDate.text
|
326 |
+
})
|
327 |
+
|
328 |
+
return news
|
329 |
+
except Exception as e:
|
330 |
+
st.error(f"Error fetching news: {str(e)}")
|
331 |
+
return []
|
332 |
+
|
333 |
+
def get_table_download_link(df):
|
334 |
+
csv = df.to_csv(index=False)
|
335 |
+
b64 = base64.b64encode(csv.encode()).decode()
|
336 |
+
href = f'<a href="data:file/csv;base64,{b64}" download="stock_data.csv">Download CSV File</a>'
|
337 |
+
return href
|
338 |
+
|
339 |
+
def main():
|
340 |
+
st.set_page_config(page_title="Stock Price Predictor", layout="wide")
|
341 |
+
st.title("Advanced Stock Price Predictor using Prophet")
|
342 |
+
|
343 |
+
st.sidebar.title("Options")
|
344 |
+
app_mode = st.sidebar.selectbox("Choose the app mode", ["Test Model", "Predict Stock Prices"])
|
345 |
+
|
346 |
+
if app_mode == "Test Model":
|
347 |
+
test_model()
|
348 |
+
else:
|
349 |
+
predict_stock_prices()
|
350 |
+
|
351 |
+
def test_model():
|
352 |
+
st.header("Test Prophet Model")
|
353 |
+
|
354 |
+
col1, col2 = st.columns(2)
|
355 |
+
|
356 |
+
with col1:
|
357 |
+
company = st.selectbox("Select Company", [company for company, _ in COMPANIES])
|
358 |
+
test_split = st.slider("Test Data Split", 0.1, 0.5, 0.2, 0.05)
|
359 |
+
|
360 |
+
if st.button("Train and Test Model"):
|
361 |
+
with st.spinner("Fetching data and training model..."):
|
362 |
+
company_name, ticker = next((name, symbol) for name, symbol in COMPANIES if name == company)
|
363 |
+
|
364 |
+
data = fetch_stock_data(ticker)
|
365 |
+
|
366 |
+
if data is not None:
|
367 |
+
st.subheader("Stock Data Information")
|
368 |
+
st.write(data.info())
|
369 |
+
st.write(data.describe())
|
370 |
+
st.dataframe(data.head())
|
371 |
+
|
372 |
+
st.markdown(get_table_download_link(data), unsafe_allow_html=True)
|
373 |
+
|
374 |
+
split_index = int(len(data) * (1 - test_split))
|
375 |
+
train_data = data.iloc[:split_index]
|
376 |
+
test_data = data.iloc[split_index:]
|
377 |
+
|
378 |
+
predictor = StockPredictor(train_data)
|
379 |
+
predictor.preprocess_data()
|
380 |
+
if predictor.train_model():
|
381 |
+
test_pred = predictor.predict(days=len(test_data))
|
382 |
+
|
383 |
+
if test_pred is not None:
|
384 |
+
mse, mape, rmse = predictor.evaluate_model(test_data)
|
385 |
+
accuracy = 100 - mape * 100
|
386 |
+
|
387 |
+
st.subheader("Model Performance")
|
388 |
+
st.metric("Prediction Accuracy", f"{accuracy:.2f}%")
|
389 |
+
st.metric("Mean Squared Error", f"{mse:.4f}")
|
390 |
+
st.metric("Root Mean Squared Error", f"{rmse:.4f}")
|
391 |
+
|
392 |
+
plot = create_test_plot(predictor.data, test_data, test_pred, company_name)
|
393 |
+
st.plotly_chart(plot, use_container_width=True)
|
394 |
+
else:
|
395 |
+
st.error("Failed to train the Prophet model. Please try a different dataset.")
|
396 |
+
|
397 |
+
def predict_stock_prices():
|
398 |
+
st.header("Predict Stock Prices")
|
399 |
+
|
400 |
+
col1, col2 = st.columns(2)
|
401 |
+
|
402 |
+
with col1:
|
403 |
+
company = st.selectbox("Select Company", [company for company, _ in COMPANIES])
|
404 |
+
days_to_predict = st.slider("Days to Predict", 1, 365, 30)
|
405 |
+
|
406 |
+
if st.button("Predict Stock Prices"):
|
407 |
+
with st.spinner("Fetching data and making predictions..."):
|
408 |
+
company_name, ticker = next((name, symbol) for name, symbol in COMPANIES if name == company)
|
409 |
+
|
410 |
+
data = fetch_stock_data(ticker)
|
411 |
+
|
412 |
+
if data is not None:
|
413 |
+
st.subheader("Stock Data Information")
|
414 |
+
st.write(data.info())
|
415 |
+
st.write(data.describe())
|
416 |
+
st.dataframe(data.head())
|
417 |
+
|
418 |
+
st.markdown(get_table_download_link(data), unsafe_allow_html=True)
|
419 |
+
|
420 |
+
predictor = StockPredictor(data)
|
421 |
+
predictor.preprocess_data()
|
422 |
+
if predictor.train_model():
|
423 |
+
predictions = predictor.predict(days=days_to_predict)
|
424 |
+
|
425 |
+
if predictions is not None:
|
426 |
+
plot = create_prediction_plot(data, predictions, company_name)
|
427 |
+
st.plotly_chart(plot, use_container_width=True)
|
428 |
+
|
429 |
+
candlestick_plot = create_candlestick_plot(data, company_name)
|
430 |
+
st.plotly_chart(candlestick_plot, use_container_width=True)
|
431 |
+
|
432 |
+
st.subheader("Predicted Prices")
|
433 |
+
pred_df = predictions[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail(days_to_predict)
|
434 |
+
pred_df.columns = ['Date', 'Predicted Price', 'Lower Bound', 'Upper Bound']
|
435 |
+
st.dataframe(pred_df)
|
436 |
+
|
437 |
+
news = fetch_news(company_name)
|
438 |
+
st.subheader("Latest News")
|
439 |
+
for item in news:
|
440 |
+
st.markdown(f"[{item['title']}]({item['link']}) ({item['pubDate']})")
|
441 |
+
else:
|
442 |
+
st.error("Failed to train the Prophet model. Please try a different dataset.")
|
443 |
+
|
444 |
+
def explore_data():
|
445 |
+
st.header("Explore Stock Data")
|
446 |
+
|
447 |
+
col1, col2 = st.columns(2)
|
448 |
+
|
449 |
+
with col1:
|
450 |
+
company = st.selectbox("Select Company", [company for company, _ in COMPANIES])
|
451 |
+
|
452 |
+
with col2:
|
453 |
+
period = st.selectbox("Select Time Period", ["1mo", "3mo", "6mo", "1y", "2y", "5y", "max"])
|
454 |
+
|
455 |
+
company_name, ticker = next((name, symbol) for name, symbol in COMPANIES if name == company)
|
456 |
+
|
457 |
+
if st.button("Explore Data"):
|
458 |
+
with st.spinner("Fetching and analyzing data..."):
|
459 |
+
data = yf.download(ticker, period=period)
|
460 |
+
|
461 |
+
if data is not None and not data.empty:
|
462 |
+
st.subheader(f"{company_name} Stock Data")
|
463 |
+
|
464 |
+
# Create tabs for different visualizations
|
465 |
+
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Price History", "OHLC", "Technical Indicators", "Volume & Turnover", "Statistics"])
|
466 |
+
|
467 |
+
with tab1:
|
468 |
+
# Stock Price History
|
469 |
+
fig = go.Figure()
|
470 |
+
fig.add_trace(go.Scatter(x=data.index, y=data['Open'], mode='lines', name='Open'))
|
471 |
+
fig.add_trace(go.Scatter(x=data.index, y=data['High'], mode='lines', name='High'))
|
472 |
+
fig.add_trace(go.Scatter(x=data.index, y=data['Low'], mode='lines', name='Low'))
|
473 |
+
fig.add_trace(go.Scatter(x=data.index, y=data['Close'], mode='lines', name='Close'))
|
474 |
+
|
475 |
+
# Add rolling mean and standard deviation
|
476 |
+
data['Rolling_Mean'] = data['Close'].rolling(window=20).mean()
|
477 |
+
data['Rolling_Std'] = data['Close'].rolling(window=20).std()
|
478 |
+
fig.add_trace(go.Scatter(x=data.index, y=data['Rolling_Mean'], mode='lines', name='20-day Rolling Mean', line=dict(dash='dash')))
|
479 |
+
fig.add_trace(go.Scatter(x=data.index, y=data['Rolling_Std'], mode='lines', name='20-day Rolling Std', line=dict(dash='dot')))
|
480 |
+
|
481 |
+
fig.update_layout(title=f"{company_name} Stock Price History",
|
482 |
+
xaxis_title="Date",
|
483 |
+
yaxis_title="Price",
|
484 |
+
hovermode="x unified",
|
485 |
+
template="plotly_dark")
|
486 |
+
st.plotly_chart(fig, use_container_width=True)
|
487 |
+
|
488 |
+
with tab2:
|
489 |
+
# OHLC Chart
|
490 |
+
ohlc_fig = go.Figure(data=[go.Candlestick(x=data.index,
|
491 |
+
open=data['Open'],
|
492 |
+
high=data['High'],
|
493 |
+
low=data['Low'],
|
494 |
+
close=data['Close'])])
|
495 |
+
ohlc_fig.update_layout(title=f"{company_name} OHLC Chart",
|
496 |
+
xaxis_title="Date",
|
497 |
+
yaxis_title="Price",
|
498 |
+
template="plotly_dark",
|
499 |
+
xaxis_rangeslider_visible=False)
|
500 |
+
st.plotly_chart(ohlc_fig, use_container_width=True)
|
501 |
+
|
502 |
+
with tab3:
|
503 |
+
# Technical Indicators
|
504 |
+
data['SMA_20'] = SMAIndicator(close=data['Close'], window=20).sma_indicator()
|
505 |
+
data['EMA_20'] = EMAIndicator(close=data['Close'], window=20).ema_indicator()
|
506 |
+
bb = BollingerBands(close=data['Close'], window=20, window_dev=2)
|
507 |
+
data['BB_High'] = bb.bollinger_hband()
|
508 |
+
data['BB_Low'] = bb.bollinger_lband()
|
509 |
+
data['RSI'] = RSIIndicator(close=data['Close']).rsi()
|
510 |
+
|
511 |
+
fig = make_subplots(rows=2, cols=1, shared_xaxes=True,
|
512 |
+
vertical_spacing=0.03,
|
513 |
+
subplot_titles=("Price and Indicators", "RSI"),
|
514 |
+
row_heights=[0.7, 0.3])
|
515 |
+
|
516 |
+
fig.add_trace(go.Scatter(x=data.index, y=data['Close'], mode='lines', name='Close'), row=1, col=1)
|
517 |
+
fig.add_trace(go.Scatter(x=data.index, y=data['SMA_20'], mode='lines', name='SMA 20'), row=1, col=1)
|
518 |
+
fig.add_trace(go.Scatter(x=data.index, y=data['EMA_20'], mode='lines', name='EMA 20'), row=1, col=1)
|
519 |
+
fig.add_trace(go.Scatter(x=data.index, y=data['BB_High'], mode='lines', name='BB High'), row=1, col=1)
|
520 |
+
fig.add_trace(go.Scatter(x=data.index, y=data['BB_Low'], mode='lines', name='BB Low'), row=1, col=1)
|
521 |
+
|
522 |
+
fig.add_trace(go.Scatter(x=data.index, y=data['RSI'], mode='lines', name='RSI'), row=2, col=1)
|
523 |
+
fig.add_hline(y=70, line_dash="dash", line_color="red", row=2, col=1)
|
524 |
+
fig.add_hline(y=30, line_dash="dash", line_color="green", row=2, col=1)
|
525 |
+
|
526 |
+
fig.update_layout(height=800, title_text=f"{company_name} Technical Indicators",
|
527 |
+
hovermode="x unified", template="plotly_dark")
|
528 |
+
fig.update_xaxes(rangeslider_visible=False, row=2, col=1)
|
529 |
+
fig.update_yaxes(title_text="Price", row=1, col=1)
|
530 |
+
fig.update_yaxes(title_text="RSI", row=2, col=1)
|
531 |
+
|
532 |
+
st.plotly_chart(fig, use_container_width=True)
|
533 |
+
|
534 |
+
with tab4:
|
535 |
+
# Volume and Turnover
|
536 |
+
fig = make_subplots(rows=2, cols=1, shared_xaxes=True,
|
537 |
+
vertical_spacing=0.03,
|
538 |
+
subplot_titles=("Volume", "Turnover (if available)"),
|
539 |
+
row_heights=[0.5, 0.5])
|
540 |
+
|
541 |
+
fig.add_trace(go.Bar(x=data.index, y=data['Volume'], name='Volume'), row=1, col=1)
|
542 |
+
|
543 |
+
if 'Turnover' in data.columns:
|
544 |
+
fig.add_trace(go.Bar(x=data.index, y=data['Turnover'], name='Turnover'), row=2, col=1)
|
545 |
+
else:
|
546 |
+
fig.add_annotation(text="Turnover data not available", xref="paper", yref="paper", x=0.5, y=0.25, showarrow=False)
|
547 |
+
|
548 |
+
fig.update_layout(height=600, title_text=f"{company_name} Volume and Turnover",
|
549 |
+
hovermode="x unified", template="plotly_dark")
|
550 |
+
fig.update_xaxes(rangeslider_visible=False, row=2, col=1)
|
551 |
+
fig.update_yaxes(title_text="Volume", row=1, col=1)
|
552 |
+
fig.update_yaxes(title_text="Turnover", row=2, col=1)
|
553 |
+
|
554 |
+
st.plotly_chart(fig, use_container_width=True)
|
555 |
+
|
556 |
+
with tab5:
|
557 |
+
# Display key statistics
|
558 |
+
st.subheader("Key Statistics")
|
559 |
+
col1, col2, col3 = st.columns(3)
|
560 |
+
with col1:
|
561 |
+
st.metric("Current Price", f"${data['Close'].iloc[-1]:.2f}")
|
562 |
+
st.metric("52 Week High", f"${data['High'].max():.2f}")
|
563 |
+
with col2:
|
564 |
+
st.metric("Volume", f"{data['Volume'].iloc[-1]:,}")
|
565 |
+
st.metric("52 Week Low", f"${data['Low'].min():.2f}")
|
566 |
+
with col3:
|
567 |
+
returns = (data['Close'].pct_change() * 100).dropna()
|
568 |
+
st.metric("Avg Daily Return", f"{returns.mean():.2f}%")
|
569 |
+
st.metric("Return Volatility", f"{returns.std():.2f}%")
|
570 |
+
|
571 |
+
# Correlation Heatmap
|
572 |
+
correlation = data[['Open', 'High', 'Low', 'Close', 'Volume']].corr()
|
573 |
+
heatmap_fig = px.imshow(correlation, text_auto=True, aspect="auto", color_continuous_scale='Viridis')
|
574 |
+
heatmap_fig.update_layout(title="Correlation Heatmap", template="plotly_dark")
|
575 |
+
st.plotly_chart(heatmap_fig, use_container_width=True)
|
576 |
+
|
577 |
+
# Display news
|
578 |
+
st.subheader("Latest News")
|
579 |
+
news = fetch_news(company_name)
|
580 |
+
for item in news:
|
581 |
+
st.markdown(f"[{item['title']}]({item['link']}) ({item['pubDate']})")
|
582 |
+
|
583 |
+
else:
|
584 |
+
st.error("Failed to fetch data. Please try again.")
|
585 |
+
|
586 |
+
if __name__ == "__main__":
|
587 |
+
main()
|