File size: 19,686 Bytes
600acaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import streamlit as st
import random
from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage, SystemMessage
from langchain.document_loaders import TextLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.chains import RetrievalQA
import os
from dotenv import load_dotenv
import requests
from bs4 import BeautifulSoup
import pandas as pd
from googleapiclient.discovery import build
from googleapiclient.errors import HttpError
import time
from langchain.schema import Document
from docx import Document as DocxDocument
from PyPDF2 import PdfReader
import io

# Load environment variables
load_dotenv()

AI71_BASE_URL = "https://api.ai71.ai/v1/"
AI71_API_KEY = "api71-api-92fc2ef9-9f3c-47e5-a019-18e257b04af2"

# Initialize session state variables
if "custom_personality" not in st.session_state:
    st.session_state.custom_personality = ""
if "messages" not in st.session_state:
    st.session_state.messages = []

# Initialize the Falcon model
@st.cache_resource
def get_llm():
    return ChatOpenAI(
        model="tiiuae/falcon-180B-chat",
        api_key=AI71_API_KEY,
        base_url=AI71_BASE_URL,
        streaming=True,
    )

# Initialize embeddings
@st.cache_resource
def get_embeddings():
    return HuggingFaceEmbeddings()

def process_documents(uploaded_files):
    documents = []
    for uploaded_file in uploaded_files:
        file_extension = os.path.splitext(uploaded_file.name)[1].lower()
        try:
            if file_extension in [".txt", ".md"]:
                content = uploaded_file.getvalue().decode("utf-8")
                documents.append(Document(page_content=content, metadata={"source": uploaded_file.name}))
            elif file_extension == ".docx":
                docx_file = io.BytesIO(uploaded_file.getvalue())
                doc = DocxDocument(docx_file)
                content = "\n".join([para.text for para in doc.paragraphs])
                documents.append(Document(page_content=content, metadata={"source": uploaded_file.name}))
            elif file_extension == ".pdf":
                pdf_file = io.BytesIO(uploaded_file.getvalue())
                pdf_reader = PdfReader(pdf_file)
                content = ""
                for page in pdf_reader.pages:
                    content += page.extract_text()
                documents.append(Document(page_content=content, metadata={"source": uploaded_file.name}))
            else:
                st.warning(f"Unsupported file type: {file_extension}")
        except Exception as e:
            st.error(f"Error processing file {uploaded_file.name}: {str(e)}")
    
    if not documents:
        return None
    
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
    texts = text_splitter.split_documents(documents)
    
    vectorstore = FAISS.from_documents(texts, get_embeddings())
    retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
    
    qa_chain = RetrievalQA.from_chain_type(
        llm=get_llm(),
        chain_type="stuff",
        retriever=retriever,
        return_source_documents=True,
    )
    
    return qa_chain

def get_chatbot_response(user_input, qa_chain=None, personality="default", web_search=False):
    system_message = get_personality_prompt(personality)
    
    web_info = ""
    if web_search:
        web_results = search_web_duckduckgo(user_input)
        web_info = "\n\n".join([f"Title: {result['title']}\nLink: {result['link']}\nSnippet: {result['snippet']}" for result in web_results])
        user_input += f"\n\nWeb search results:\n{web_info}"
    
    if qa_chain:
        result = qa_chain({"query": user_input})
        response = result['result']
        source_docs = result.get('source_documents', [])
    else:
        messages = [
            SystemMessage(content=system_message),
            HumanMessage(content=user_input)
        ]
        response = get_llm().invoke(messages).content
        source_docs = []
    
    return response, source_docs, web_results if web_search else None

def get_personality_prompt(personality):
    personalities = {
        "default": "You are a helpful assistant.",
        "sherlock": "You are Sherlock Holmes, the world's greatest detective. Respond with keen observation and deductive reasoning.",
        "yoda": "Wise and cryptic, you are. Like Yoda from Star Wars, speak you must.",
        "shakespeare": "Thou art the Bard himself. In iambic pentameter, respond with eloquence and poetic flair.",
        "custom": st.session_state.custom_personality
    }
    return personalities.get(personality, personalities["default"])

def search_web_duckduckgo(query: str, num_results: int = 3, max_retries: int = 3):
    api_key = "AIzaSyD-1OMuZ0CxGAek0PaXrzHOmcDWFvZQtm8"
    cse_id = "877170db56f5c4629"
    
    for attempt in range(max_retries):
        try:
            service = build("customsearch", "v1", developerKey=api_key)
            res = service.cse().list(q=query, cx=cse_id, num=num_results).execute()
            results = []
            if "items" in res:
                for item in res["items"]:
                    result = {
                        "title": item["title"],
                        "link": item["link"],
                        "snippet": item.get("snippet", "")
                    }
                    results.append(result)
            return results
        except HttpError as e:
            print(f"HTTP error occurred: {e}. Attempt {attempt + 1} of {max_retries}")
        except Exception as e:
            print(f"An unexpected error occurred: {e}. Attempt {attempt + 1} of {max_retries}")
        time.sleep(2 ** attempt)
    print("Max retries reached. No results found.")
    return []

def main():
    st.set_page_config(page_title="S.H.E.R.L.O.C.K. Chatbot", page_icon="πŸ•΅οΈ", layout="wide")
    
    st.title("S.H.E.R.L.O.C.K. Chatbot")
    
    # Sidebar
    with st.sidebar:
        st.image("", use_column_width=True)
        
        st.subheader("πŸ“ Document Upload")
        uploaded_files = st.file_uploader("Upload documents", type=["txt", "md", "docx", "pdf"], accept_multiple_files=True)
        
        st.subheader("🎭 Chatbot Personality")
        personality = st.selectbox("Choose chatbot personality", ["default", "sherlock", "yoda", "shakespeare", "custom"])
        
        if personality == "custom":
            st.session_state.custom_personality = st.text_area("Enter custom personality details:", value=st.session_state.custom_personality)
        
        st.subheader("🌐 Web Search")
        web_search = st.checkbox("Enable web search")
        
        st.subheader("πŸ’¬ Chat Mode")
        chat_mode = st.radio("Select chat mode", ["General Chat", "Document Chat"])
        
        if st.button("Clear Chat History"):
            st.session_state.messages = []
            st.rerun()

    # Main content
    if uploaded_files:
        qa_chain = process_documents(uploaded_files)
        if qa_chain:
            st.success("Documents processed successfully!")
        else:
            st.warning("No valid documents were uploaded or processed.")
    else:
        qa_chain = None

    # Chat interface
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])

    if prompt := st.chat_input("What is your question?"):
        st.chat_message("user").markdown(prompt)
        st.session_state.messages.append({"role": "user", "content": prompt})

        if chat_mode == "General Chat" or not qa_chain:
            response, _, web_results = get_chatbot_response(prompt, personality=personality, web_search=web_search)
        else:
            response, source_docs, web_results = get_chatbot_response(prompt, qa_chain, personality, web_search)
        
        with st.chat_message("assistant"):
            st.markdown(response)
            if chat_mode == "Document Chat" and qa_chain and source_docs:
                with st.expander("Source Documents"):
                    for doc in source_docs:
                        st.markdown(f"**Source:** {doc.metadata.get('source', 'Unknown')}")
                        st.markdown(doc.page_content[:200] + "...")
            
            if web_search and web_results:
                with st.expander("Web Search Results"):
                    for result in web_results:
                        st.markdown(f"**[{result['title']}]({result['link']})**")
                        st.markdown(result['snippet'])
        
        st.session_state.messages.append({"role": "assistant", "content": response})

    # Chat history and download
    with st.sidebar:
        st.subheader("πŸ“œ Chat History")
        history_expander = st.expander("View Chat History")
        with history_expander:
            for message in st.session_state.messages:
                st.text(f"{message['role']}: {message['content'][:50]}...")
        
        if st.session_state.messages:
            chat_history_df = pd.DataFrame(st.session_state.messages)
            csv = chat_history_df.to_csv(index=False)
            st.download_button(
                label="πŸ“₯ Download Chat History",
                data=csv,
                file_name="chat_history.csv",
                mime="text/csv",
            )

    st.sidebar.markdown("---")
    st.sidebar.markdown("Powered by Falcon-180B and Streamlit")

if __name__ == "__main__":
    main()