|
import streamlit as st
|
|
import random
|
|
from langchain_community.chat_models import ChatOpenAI
|
|
from langchain.schema import HumanMessage, SystemMessage
|
|
from langchain_community.document_loaders import PyPDFLoader, TextLoader
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
from langchain_huggingface import HuggingFaceEmbeddings
|
|
from langchain_community.vectorstores import FAISS
|
|
from langchain.chains import RetrievalQA
|
|
import os
|
|
from dotenv import load_dotenv
|
|
import tempfile
|
|
|
|
|
|
load_dotenv()
|
|
|
|
AI71_BASE_URL = "https://api.ai71.ai/v1/"
|
|
AI71_API_KEY = "api71-api-92fc2ef9-9f3c-47e5-a019-18e257b04af2"
|
|
|
|
|
|
chat = ChatOpenAI(
|
|
model="tiiuae/falcon-180B-chat",
|
|
api_key=AI71_API_KEY,
|
|
base_url=AI71_BASE_URL,
|
|
streaming=True,
|
|
)
|
|
|
|
|
|
embeddings = HuggingFaceEmbeddings()
|
|
|
|
|
|
PREDEFINED_TOPICS = [
|
|
"Quantum Computing", "Artificial Intelligence Ethics", "Blockchain Technology",
|
|
"Neuroscience", "Climate Change Mitigation", "Space Exploration",
|
|
"Renewable Energy", "Genetic Engineering", "Cybersecurity",
|
|
"Machine Learning", "Nanotechnology", "Robotics",
|
|
"Virtual Reality", "Augmented Reality", "Internet of Things",
|
|
"5G Technology", "Autonomous Vehicles", "Bioinformatics",
|
|
"Cloud Computing", "Data Science", "Artificial General Intelligence",
|
|
"Quantum Cryptography", "3D Printing", "Smart Cities",
|
|
"Biotechnology", "Fusion Energy", "Sustainable Agriculture",
|
|
"Space Tourism", "Quantum Sensors", "Brain-Computer Interfaces",
|
|
"Personalized Medicine", "Synthetic Biology", "Exoplanets",
|
|
"Dark Matter", "CRISPR Technology", "Quantum Internet",
|
|
"Deep Learning", "Edge Computing", "Humanoid Robots",
|
|
"Drone Technology", "Quantum Supremacy", "Neuromorphic Computing",
|
|
"Asteroid Mining", "Bionic Implants", "Smart Materials",
|
|
"Quantum Dots", "Lab-grown Meat", "Vertical Farming",
|
|
"Hyperloop Transportation", "Molecular Nanotechnology", "Quantum Metrology",
|
|
"Artificial Photosynthesis", "Cognitive Computing", "Swarm Robotics",
|
|
"Metamaterials", "Neuroplasticity", "Quantum Machine Learning",
|
|
"Green Hydrogen", "Organ-on-a-Chip", "Bioprinting",
|
|
"Plasma Physics", "Quantum Simulation", "Soft Robotics",
|
|
"Geoengineering", "Exoskeletons", "Programmable Matter",
|
|
"Graphene Applications", "Quantum Sensing", "Neuralink",
|
|
"Holographic Displays", "Quantum Error Correction", "Synthetic Genomes",
|
|
"Carbon Capture and Storage", "Quantum Memory", "Organoids",
|
|
"Artificial Synapses", "Quantum Imaging", "Biosensors",
|
|
"Memristors", "Quantum Annealing", "DNA Data Storage",
|
|
"Cultured Meat", "Quantum Radar", "Neuromorphic Hardware",
|
|
"Quantum Entanglement", "Phytomining", "Biohacking",
|
|
"Topological Quantum Computing", "Neuroprosthetics", "Optogenetics",
|
|
"Quantum Gravity", "Molecular Machines", "Biomimicry",
|
|
"Quantum Teleportation", "Neurogenesis", "Bioelectronics",
|
|
"Quantum Tunneling", "Tissue Engineering", "Bioremediation",
|
|
"Quantum Photonics", "Synthetic Neurobiology", "Nanomedicine",
|
|
"Quantum Biology", "Biogeochemistry", "Molecular Gastronomy",
|
|
"Quantum Thermodynamics", "Nutrigenomics", "Biomechatronics",
|
|
"Quantum Chemistry", "Psychoneuroimmunology", "Nanophotonics",
|
|
"Quantum Optics", "Neuroeconomics", "Bionanotechnology"
|
|
]
|
|
|
|
def process_document(file):
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.name)[1]) as temp_file:
|
|
temp_file.write(file.getvalue())
|
|
temp_file_path = temp_file.name
|
|
|
|
if file.name.endswith('.pdf'):
|
|
loader = PyPDFLoader(temp_file_path)
|
|
else:
|
|
loader = TextLoader(temp_file_path)
|
|
|
|
documents = loader.load()
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
|
texts = text_splitter.split_documents(documents)
|
|
|
|
vectorstore = FAISS.from_documents(texts, embeddings)
|
|
retriever = vectorstore.as_retriever(search_kwargs={"k": 5})
|
|
|
|
qa_chain = RetrievalQA.from_chain_type(
|
|
llm=chat,
|
|
chain_type="stuff",
|
|
retriever=retriever,
|
|
return_source_documents=True
|
|
)
|
|
|
|
os.unlink(temp_file_path)
|
|
return qa_chain
|
|
|
|
def get_sherlock_analysis(topic, qa_chain=None):
|
|
system_prompt = """
|
|
You are Sherlock Holmes, the world's greatest detective and master of observation and deduction.
|
|
Your task is to provide an in-depth analysis of the given topic, offering unique insights on how to approach learning it from the ground up.
|
|
Your analysis should:
|
|
1. Break down the topic into its fundamental components.
|
|
2. Identify key concepts and their relationships.
|
|
3. Suggest a structured approach to learning, starting from first principles.
|
|
4. Highlight potential challenges and how to overcome them.
|
|
5. Provide a unique point of view that encourages critical thinking.
|
|
Your response should be detailed, insightful, and encourage a deep understanding of the subject.
|
|
"""
|
|
|
|
if qa_chain:
|
|
result = qa_chain({"query": f"Provide a Sherlock Holmes style analysis of the topic: {topic}"})
|
|
response = result['result']
|
|
else:
|
|
messages = [
|
|
SystemMessage(content=system_prompt),
|
|
HumanMessage(content=f"Analyze the following topic: {topic}")
|
|
]
|
|
response = chat.invoke(messages).content
|
|
|
|
return response
|
|
|
|
def chunk_text(text, max_chunk_size=4000):
|
|
chunks = []
|
|
current_chunk = ""
|
|
for sentence in text.split(". "):
|
|
if len(current_chunk) + len(sentence) < max_chunk_size:
|
|
current_chunk += sentence + ". "
|
|
else:
|
|
chunks.append(current_chunk)
|
|
current_chunk = sentence + ". "
|
|
if current_chunk:
|
|
chunks.append(current_chunk)
|
|
return chunks
|
|
|
|
def main():
|
|
st.set_page_config(page_title="S.H.E.R.L.O.C.K. Observation", page_icon="🔍", layout="wide")
|
|
|
|
st.title("🕵️ S.H.E.R.L.O.C.K. Observation")
|
|
st.markdown("*Uncover the depths of any subject with the keen insight of Sherlock Holmes*")
|
|
|
|
col1, col2 = st.columns([2, 1])
|
|
|
|
with col2:
|
|
st.subheader("Choose Your Method")
|
|
method = st.radio("Select input method:", ["Enter Topic", "Upload Document", "Choose from List"])
|
|
|
|
if method == "Enter Topic":
|
|
topic = st.text_input("Enter your topic of interest:")
|
|
elif method == "Upload Document":
|
|
uploaded_file = st.file_uploader("Upload a document (PDF or TXT)", type=["pdf", "txt"])
|
|
if uploaded_file:
|
|
topic = uploaded_file.name
|
|
else:
|
|
topic = st.selectbox("Choose a topic:", PREDEFINED_TOPICS)
|
|
|
|
if st.button("Analyze", key="analyze_button"):
|
|
if method == "Upload Document" and uploaded_file:
|
|
qa_chain = process_document(uploaded_file)
|
|
analysis = get_sherlock_analysis(topic, qa_chain)
|
|
elif topic:
|
|
analysis = get_sherlock_analysis(topic)
|
|
else:
|
|
st.warning("Please provide a topic or upload a document.")
|
|
return
|
|
|
|
col1.markdown("## Sherlock's Analysis")
|
|
chunks = chunk_text(analysis)
|
|
for chunk in chunks:
|
|
col1.markdown(chunk)
|
|
|
|
st.sidebar.image("https://upload.wikimedia.org/wikipedia/commons/c/cd/Sherlock_Holmes_Portrait_Paget.jpg", use_column_width=True)
|
|
st.sidebar.title("About S.H.E.R.L.O.C.K. Observation")
|
|
st.sidebar.markdown("""
|
|
S.H.E.R.L.O.C.K. Observation is your personal detective for any subject.
|
|
It provides:
|
|
- In-depth analysis of topics
|
|
- Unique perspectives on learning approaches
|
|
- First principles breakdown of subjects
|
|
- Critical thinking encouragement
|
|
|
|
Let Sherlock guide you through the intricacies of any field of study!
|
|
""")
|
|
|
|
st.sidebar.markdown("---")
|
|
st.sidebar.markdown("Powered by Falcon-180B and Streamlit")
|
|
|
|
if __name__ == "__main__":
|
|
main() |