|
import streamlit as st
|
|
import networkx as nx
|
|
import plotly.graph_objects as go
|
|
from dotenv import load_dotenv
|
|
from langchain.chat_models import ChatOpenAI
|
|
from langchain.prompts import ChatPromptTemplate
|
|
from langchain.output_parsers import PydanticOutputParser
|
|
from pydantic import BaseModel, Field
|
|
from typing import List, Dict, Optional
|
|
import json
|
|
import pandas as pd
|
|
import time
|
|
from datetime import datetime
|
|
import random
|
|
import re
|
|
from PIL import Image
|
|
import logging
|
|
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
load_dotenv()
|
|
|
|
AI71_BASE_URL = "https://api.ai71.ai/v1/"
|
|
AI71_API_KEY = "api71-api-92fc2ef9-9f3c-47e5-a019-18e257b04af2"
|
|
|
|
|
|
chat = ChatOpenAI(
|
|
model="tiiuae/falcon-180B-chat",
|
|
api_key=AI71_API_KEY,
|
|
base_url=AI71_BASE_URL,
|
|
temperature=0.7,
|
|
)
|
|
|
|
class RoadmapStep(BaseModel):
|
|
title: str
|
|
description: str
|
|
resources: List[Dict[str, str]] = Field(default_factory=list)
|
|
estimated_time: str
|
|
how_to_use: Optional[str] = None
|
|
|
|
class Roadmap(BaseModel):
|
|
steps: Dict[str, RoadmapStep] = Field(default_factory=dict)
|
|
|
|
def clean_json(content):
|
|
|
|
content = content.strip()
|
|
|
|
|
|
if not content.startswith('{'):
|
|
content = '{' + content
|
|
if not content.endswith('}'):
|
|
content = content + '}'
|
|
|
|
|
|
content = ' '.join(content.split())
|
|
|
|
|
|
content = re.sub(r'(?<!\\)"(?=(?:(?:[^"]*"){2})*[^"]*$)', r'\"', content)
|
|
|
|
return content
|
|
|
|
def ensure_valid_json(content):
|
|
|
|
content = clean_json(content)
|
|
|
|
|
|
pattern = r'(\{|\,)\s*([a-zA-Z_][a-zA-Z0-9_]*)\s*:'
|
|
content = re.sub(pattern, r'\1 "\2":', content)
|
|
|
|
|
|
content = content.replace("'", '"')
|
|
|
|
|
|
try:
|
|
json_obj = json.loads(content)
|
|
return json.dumps(json_obj)
|
|
except json.JSONDecodeError as e:
|
|
|
|
logger.error(f"Failed to parse JSON after cleaning: {str(e)}")
|
|
logger.debug(f"Problematic JSON: {content}")
|
|
return None
|
|
|
|
def generate_roadmap(topic):
|
|
levels = [
|
|
"knowledge",
|
|
"comprehension",
|
|
"application",
|
|
"analysis",
|
|
"synthesis",
|
|
"evaluation"
|
|
]
|
|
|
|
roadmap = Roadmap()
|
|
|
|
for level in levels:
|
|
try:
|
|
logger.info(f"Generating roadmap step for topic: {topic} at {level} level")
|
|
step = generate_simplified_step(topic, level, chat)
|
|
roadmap.steps[level] = step
|
|
logger.info(f"Added step for {level} level")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error in generate_roadmap for {level}: {str(e)}")
|
|
step = create_fallback_step(topic, level, chat)
|
|
roadmap.steps[level] = step
|
|
|
|
logger.info("Roadmap generation complete")
|
|
return roadmap
|
|
|
|
def generate_diverse_resources(topic, level):
|
|
encoded_topic = topic.replace(' ', '+')
|
|
encoded_level = level.replace(' ', '+')
|
|
|
|
resource_templates = [
|
|
{"title": "Wikipedia", "url": f"https://en.wikipedia.org/wiki/{topic.replace(' ', '_')}"},
|
|
{"title": "YouTube Overview", "url": f"https://www.youtube.com/results?search_query={encoded_topic}+{encoded_level}"},
|
|
{"title": "Coursera Courses", "url": f"https://www.coursera.org/search?query={encoded_topic}"},
|
|
{"title": "edX Courses", "url": f"https://www.edx.org/search?q={encoded_topic}"},
|
|
{"title": "Brilliant", "url": f"https://brilliant.org/search/?q={encoded_topic}"},
|
|
{"title": "Google Scholar", "url": f"https://scholar.google.com/scholar?q={encoded_topic}"},
|
|
{"title": "MIT OpenCourseWare", "url": f"https://ocw.mit.edu/search/?q={encoded_topic}"},
|
|
{"title": "Khan Academy", "url": f"https://www.khanacademy.org/search?query={encoded_topic}"},
|
|
{"title": "TED Talks", "url": f"https://www.ted.com/search?q={encoded_topic}"},
|
|
{"title": "arXiv Papers", "url": f"https://arxiv.org/search/?query={encoded_topic}&searchtype=all"},
|
|
{"title": "ResearchGate", "url": f"https://www.researchgate.net/search/publication?q={encoded_topic}"},
|
|
{"title": "Academic Earth", "url": f"https://academicearth.org/search/?q={encoded_topic}"},
|
|
]
|
|
|
|
|
|
num_resources = random.randint(5, 7)
|
|
selected_resources = random.sample(resource_templates, num_resources)
|
|
|
|
return selected_resources
|
|
|
|
def create_fallback_step(topic, level, chat):
|
|
def generate_component(prompt, default_value):
|
|
try:
|
|
response = chat.invoke([{"role": "system", "content": prompt}])
|
|
return response.content.strip() or default_value
|
|
except Exception as e:
|
|
logger.error(f"Error generating component: {str(e)}")
|
|
return default_value
|
|
|
|
|
|
title_prompt = f"Create a concise title (max 10 words) for a study step about {topic} at the {level} level of Bloom's Taxonomy."
|
|
default_title = f"{level.capitalize()} Step for {topic}"
|
|
title = generate_component(title_prompt, default_title)
|
|
|
|
|
|
description_prompt = f"""Write a detailed description (500-700 words) for a study step about {topic} at the {level} level of Bloom's Taxonomy.
|
|
Explain what this step entails, how the user should approach it, and why it's important for mastering the topic at this level.
|
|
The description should be specific to {topic} and not a generic explanation of the Bloom's Taxonomy level."""
|
|
default_description = f"In this step, you will focus on {topic} at the {level} level. This involves understanding key concepts and theories related to {topic}. Engage with the provided resources to build a strong foundation."
|
|
description = generate_component(description_prompt, default_description)
|
|
|
|
|
|
time_prompt = f"Estimate the time needed to complete a study step about {topic} at the {level} level of Bloom's Taxonomy. Provide the answer in a format like '3-4 days' or '1-2 weeks'."
|
|
default_time = "3-4 days"
|
|
estimated_time = generate_component(time_prompt, default_time)
|
|
|
|
|
|
how_to_use_prompt = f"""Write a paragraph (100-150 words) on how to effectively use the {level} level of Bloom's Taxonomy when studying {topic}.
|
|
Include tips and strategies specific to {topic} at this {level} level."""
|
|
default_how_to_use = f"Explore the provided resources and take notes on key concepts related to {topic}. Practice explaining these concepts in your own words to reinforce your understanding at the {level} level."
|
|
how_to_use = generate_component(how_to_use_prompt, default_how_to_use)
|
|
|
|
return RoadmapStep(
|
|
title=title,
|
|
description=description,
|
|
resources=generate_diverse_resources(topic, level),
|
|
estimated_time=estimated_time,
|
|
how_to_use=how_to_use
|
|
)
|
|
|
|
def create_interactive_graph(roadmap):
|
|
G = nx.DiGraph()
|
|
color_map = {
|
|
'Knowledge': '#FF6B6B',
|
|
'Comprehension': '#4ECDC4',
|
|
'Application': '#45B7D1',
|
|
'Analysis': '#FFA07A',
|
|
'Synthesis': '#98D8C8',
|
|
'Evaluation': '#F9D56E'
|
|
}
|
|
|
|
for i, (level, step) in enumerate(roadmap.steps.items()):
|
|
G.add_node(step.title, level=level.capitalize(), pos=(i, -i))
|
|
|
|
pos = nx.get_node_attributes(G, 'pos')
|
|
|
|
edge_trace = go.Scatter(
|
|
x=[], y=[],
|
|
line=dict(width=2, color='#888'),
|
|
hoverinfo='none',
|
|
mode='lines')
|
|
|
|
node_trace = go.Scatter(
|
|
x=[], y=[],
|
|
mode='markers+text',
|
|
hoverinfo='text',
|
|
marker=dict(
|
|
showscale=False,
|
|
color=[],
|
|
size=30,
|
|
line_width=2
|
|
),
|
|
text=[],
|
|
textposition="top center"
|
|
)
|
|
|
|
for node in G.nodes():
|
|
x, y = pos[node]
|
|
node_trace['x'] += (x,)
|
|
node_trace['y'] += (y,)
|
|
node_info = f"{node}<br>Level: {G.nodes[node]['level']}"
|
|
node_trace['text'] += (node_info,)
|
|
node_trace['marker']['color'] += (color_map.get(G.nodes[node]['level'], '#CCCCCC'),)
|
|
|
|
fig = go.Figure(data=[edge_trace, node_trace],
|
|
layout=go.Layout(
|
|
title='Interactive Study Roadmap',
|
|
titlefont_size=16,
|
|
showlegend=False,
|
|
hovermode='closest',
|
|
margin=dict(b=20,l=5,r=5,t=40),
|
|
annotations=[dict(
|
|
text="",
|
|
showarrow=False,
|
|
xref="paper", yref="paper",
|
|
x=0.005, y=-0.002
|
|
)],
|
|
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
|
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
|
plot_bgcolor='rgba(0,0,0,0)',
|
|
paper_bgcolor='rgba(0,0,0,0)'
|
|
))
|
|
|
|
|
|
for level, color in color_map.items():
|
|
fig.add_trace(go.Scatter(
|
|
x=[None], y=[None],
|
|
mode='markers',
|
|
marker=dict(size=10, color=color),
|
|
showlegend=True,
|
|
name=level
|
|
))
|
|
|
|
fig.update_layout(legend=dict(
|
|
orientation="h",
|
|
yanchor="bottom",
|
|
y=1.02,
|
|
xanchor="right",
|
|
x=1
|
|
))
|
|
|
|
return fig
|
|
|
|
def get_user_progress(roadmap):
|
|
if 'user_progress' not in st.session_state:
|
|
st.session_state.user_progress = {}
|
|
|
|
for level, step in roadmap.steps.items():
|
|
if step.title not in st.session_state.user_progress:
|
|
st.session_state.user_progress[step.title] = 0
|
|
|
|
return st.session_state.user_progress
|
|
|
|
def update_user_progress(step_title, progress):
|
|
st.session_state.user_progress[step_title] = progress
|
|
|
|
def calculate_overall_progress(progress_dict):
|
|
if not progress_dict:
|
|
return 0
|
|
total_steps = len(progress_dict)
|
|
completed_steps = sum(1 for progress in progress_dict.values() if progress == 100)
|
|
return (completed_steps / total_steps) * 100
|
|
|
|
def generate_simplified_step(topic, level, chat):
|
|
prompt = f"""Create a detailed study step for the topic: {topic} at the {level} level of Bloom's Taxonomy.
|
|
|
|
Provide:
|
|
1. A descriptive title (max 10 words)
|
|
2. A detailed description (500-700 words) explaining what this step entails, how the user should approach it, and why it's important for mastering the topic at this level. The description should be specific to {topic} and not a generic explanation of the Bloom's Taxonomy level.
|
|
3. Estimated time for completion (e.g., 3-4 days, 1-2 weeks, etc.)
|
|
4. A paragraph (100-150 words) on how to use this level effectively, including tips and strategies specific to {topic} at this {level} level
|
|
|
|
Format your response as a valid JSON object with the following structure:
|
|
{{
|
|
"title": "Step title",
|
|
"description": "Step description",
|
|
"estimated_time": "Estimated time",
|
|
"how_to_use": "Paragraph on how to use this level effectively"
|
|
}}
|
|
"""
|
|
|
|
try:
|
|
response = chat.invoke([{"role": "system", "content": prompt}])
|
|
valid_json = ensure_valid_json(response.content)
|
|
if valid_json is None:
|
|
raise ValueError("Failed to create valid JSON")
|
|
|
|
step_dict = json.loads(valid_json)
|
|
|
|
|
|
resources = generate_diverse_resources(topic, level)
|
|
|
|
return RoadmapStep(
|
|
title=step_dict["title"],
|
|
description=step_dict["description"],
|
|
resources=resources,
|
|
estimated_time=step_dict["estimated_time"],
|
|
how_to_use=step_dict["how_to_use"]
|
|
)
|
|
except Exception as e:
|
|
logger.error(f"Error in generate_simplified_step for {level}: {str(e)}")
|
|
return create_fallback_step(topic, level, chat)
|
|
|
|
|
|
|
|
def display_step(step, level, user_progress):
|
|
with st.expander(f"{level.capitalize()}: {step.title}"):
|
|
st.write(f"**Description:** {step.description}")
|
|
st.write(f"**Estimated Time:** {step.estimated_time}")
|
|
st.write("**Resources:**")
|
|
for resource in step.resources:
|
|
st.markdown(f"- [{resource['title']}]({resource['url']})")
|
|
if 'contribution' in resource:
|
|
st.write(f" *{resource['contribution']}*")
|
|
|
|
|
|
if step.how_to_use:
|
|
st.write("**How to use this level effectively:**")
|
|
st.write(step.how_to_use)
|
|
|
|
progress = st.slider(f"Progress for {step.title}", 0, 100, user_progress.get(step.title, 0), key=f"progress_{level}")
|
|
update_user_progress(step.title, progress)
|
|
|
|
def main():
|
|
st.set_page_config(page_title="S.H.E.R.L.O.C.K. Study Roadmap Generator", layout="wide")
|
|
|
|
|
|
st.markdown("""
|
|
<style>
|
|
.stApp {
|
|
background-color: #1E1E1E;
|
|
color: #FFFFFF;
|
|
}
|
|
.stButton>button {
|
|
background-color: #4CAF50;
|
|
color: white;
|
|
border-radius: 5px;
|
|
}
|
|
.stProgress > div > div > div > div {
|
|
background-color: #4CAF50;
|
|
}
|
|
.streamlit-expanderHeader {
|
|
background-color: #2E2E2E;
|
|
color: #FFFFFF;
|
|
}
|
|
.streamlit-expanderContent {
|
|
background-color: #2E2E2E;
|
|
color: #FFFFFF;
|
|
}
|
|
</style>
|
|
""", unsafe_allow_html=True)
|
|
|
|
st.title("π§ S.H.E.R.L.O.C.K. Study Roadmap Generator")
|
|
st.write("Generate a comprehensive study roadmap based on first principles for any topic.")
|
|
|
|
|
|
with st.sidebar:
|
|
st.image("https://placekitten.com/300/200", caption="S.H.E.R.L.O.C.K.", use_column_width=True)
|
|
st.markdown("""
|
|
## About S.H.E.R.L.O.C.K.
|
|
**S**tudy **H**elper for **E**fficient **R**oadmaps and **L**earning **O**ptimization using **C**omprehensive **K**nowledge
|
|
|
|
S.H.E.R.L.O.C.K. is your AI-powered study companion, designed to create personalized learning roadmaps for any topic. It breaks down complex subjects into manageable steps, ensuring a comprehensive understanding from fundamentals to advanced concepts.
|
|
""")
|
|
|
|
st.subheader("π Todo List")
|
|
if 'todos' not in st.session_state:
|
|
st.session_state.todos = []
|
|
|
|
new_todo = st.text_input("Add a new todo:")
|
|
if st.button("Add Todo", key="add_todo"):
|
|
if new_todo:
|
|
st.session_state.todos.append({"task": new_todo, "completed": False})
|
|
st.success("Todo added successfully!")
|
|
else:
|
|
st.warning("Please enter a todo item.")
|
|
|
|
for i, todo in enumerate(st.session_state.todos):
|
|
col1, col2, col3 = st.columns([0.05, 0.8, 0.15])
|
|
with col1:
|
|
todo['completed'] = st.checkbox("", todo['completed'], key=f"todo_{i}")
|
|
with col2:
|
|
st.write(todo['task'], key=f"todo_text_{i}")
|
|
with col3:
|
|
if st.button("ποΈ", key=f"delete_{i}", help="Delete todo"):
|
|
st.session_state.todos.pop(i)
|
|
st.experimental_rerun()
|
|
|
|
st.subheader("β±οΈ Pomodoro Timer")
|
|
pomodoro_duration = st.slider("Pomodoro Duration (minutes)", 1, 60, 25)
|
|
if st.button("Start Pomodoro"):
|
|
progress_bar = st.progress(0)
|
|
for i in range(pomodoro_duration * 60):
|
|
time.sleep(1)
|
|
progress_bar.progress((i + 1) / (pomodoro_duration * 60))
|
|
st.success("Pomodoro completed!")
|
|
if 'achievements' not in st.session_state:
|
|
st.session_state.achievements = set()
|
|
st.session_state.achievements.add("Consistent Learner")
|
|
|
|
topic = st.text_input("π Enter the topic you want to master:")
|
|
|
|
if st.button("π Generate Roadmap"):
|
|
if topic:
|
|
with st.spinner("π§ Generating your personalized study roadmap..."):
|
|
try:
|
|
logger.info(f"Starting roadmap generation for topic: {topic}")
|
|
roadmap = generate_roadmap(topic)
|
|
if roadmap and roadmap.steps:
|
|
logger.info("Roadmap generated successfully")
|
|
st.session_state.current_roadmap = roadmap
|
|
st.session_state.current_topic = topic
|
|
st.success("Roadmap generated successfully!")
|
|
else:
|
|
logger.warning("Generated roadmap is empty or invalid")
|
|
st.error("Failed to generate a valid roadmap. Please try again with a different topic.")
|
|
except Exception as e:
|
|
logger.error(f"Error during roadmap generation: {str(e)}", exc_info=True)
|
|
st.error(f"An error occurred while generating the roadmap: {str(e)}")
|
|
|
|
if 'current_roadmap' in st.session_state:
|
|
st.subheader(f"π Study Roadmap for: {st.session_state.current_topic}")
|
|
|
|
roadmap = st.session_state.current_roadmap
|
|
fig = create_interactive_graph(roadmap)
|
|
fig.update_layout(
|
|
plot_bgcolor='rgba(0,0,0,0)',
|
|
paper_bgcolor='rgba(0,0,0,0)',
|
|
font_color='#FFFFFF'
|
|
)
|
|
st.plotly_chart(fig, use_container_width=True)
|
|
|
|
user_progress = get_user_progress(roadmap)
|
|
|
|
levels_description = {
|
|
"knowledge": "Understanding and remembering basic facts and concepts",
|
|
"comprehension": "Grasping the meaning and interpreting information",
|
|
"application": "Using knowledge in new situations",
|
|
"analysis": "Breaking information into parts and examining relationships",
|
|
"synthesis": "Combining elements to form a new whole",
|
|
"evaluation": "Making judgments based on criteria and standards"
|
|
}
|
|
|
|
for level, step in roadmap.steps.items():
|
|
st.header(f"{level.capitalize()} Level")
|
|
st.write(f"**Description:** {levels_description[level]}")
|
|
st.write("**How to master this level:**")
|
|
st.write(f"To master the {level} level, focus on {levels_description[level].lower()}. Engage with the resources provided, practice applying the concepts, and gradually build your understanding. Remember that mastery at this level is crucial before moving to the next.")
|
|
display_step(step, level, user_progress)
|
|
|
|
overall_progress = calculate_overall_progress(user_progress)
|
|
st.progress(overall_progress / 100)
|
|
st.write(f"Overall progress: {overall_progress:.2f}%")
|
|
|
|
roadmap_json = json.dumps(roadmap.dict(), indent=2)
|
|
st.download_button(
|
|
label="π₯ Download Roadmap as JSON",
|
|
data=roadmap_json,
|
|
file_name="study_roadmap.json",
|
|
mime="application/json"
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
main() |