|
import streamlit as st |
|
import random |
|
import time |
|
from typing import List, Dict |
|
from langchain_community.chat_models import ChatOpenAI |
|
from langchain.schema import HumanMessage, SystemMessage |
|
from langchain_community.document_loaders import PyPDFLoader, TextLoader, UnstructuredWordDocumentLoader |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain_huggingface import HuggingFaceEmbeddings |
|
from langchain_community.vectorstores import FAISS |
|
from langchain.chains import RetrievalQA |
|
from langchain_community.graphs import NetworkxEntityGraph |
|
from googleapiclient.discovery import build |
|
from googleapiclient.errors import HttpError |
|
import os |
|
from dotenv import load_dotenv |
|
import requests |
|
from bs4 import BeautifulSoup |
|
|
|
|
|
load_dotenv() |
|
|
|
AI71_BASE_URL = "https://api.ai71.ai/v1/" |
|
AI71_API_KEY = "api71-api-92fc2ef9-9f3c-47e5-a019-18e257b04af2" |
|
GOOGLE_API_KEY = "AIzaSyD-1OMuZ0CxGAek0PaXrzHOmcDWFvZQtm8" |
|
GOOGLE_CSE_ID = "877170db56f5c4629" |
|
YOUTUBE_API_KEY = "AIzaSyD-1OMuZ0CxGAek0PaXrzHOmcDWFvZQtm8" |
|
|
|
|
|
chat = ChatOpenAI( |
|
model="tiiuae/falcon-180B-chat", |
|
api_key=AI71_API_KEY, |
|
base_url=AI71_BASE_URL, |
|
streaming=True, |
|
) |
|
|
|
|
|
embeddings = HuggingFaceEmbeddings() |
|
|
|
FIELDS = [ |
|
"Mathematics", "Physics", "Chemistry", "Biology", "Computer Science", |
|
"History", "Geography", "Literature", "Philosophy", "Psychology", |
|
"Sociology", "Economics", "Business", "Finance", "Accounting", |
|
"Law", "Political Science", "Environmental Science", "Astronomy", "Geology", |
|
"Linguistics", "Anthropology", "Art History", "Music Theory", "Film Studies", |
|
"Medical Science", "Nursing", "Public Health", "Nutrition", "Physical Education", |
|
"Engineering", "Architecture", "Urban Planning", "Agriculture", "Veterinary Science", |
|
"Oceanography", "Meteorology", "Statistics", "Data Science", "Artificial Intelligence", |
|
"Cybersecurity", "Renewable Energy", "Quantum Physics", "Neuroscience", "Genetics", |
|
"Biotechnology", "Nanotechnology", "Robotics", "Space Exploration", "Cryptography" |
|
] |
|
|
|
|
|
EDUCATIONAL_RESOURCES = [ |
|
"https://www.coursera.org", |
|
"https://www.khanacademy.org", |
|
"https://scholar.google.com", |
|
"https://www.edx.org", |
|
"https://www.udacity.com", |
|
"https://www.udemy.com", |
|
"https://www.futurelearn.com", |
|
"https://www.lynda.com", |
|
"https://www.skillshare.com", |
|
"https://www.codecademy.com", |
|
"https://www.brilliant.org", |
|
"https://www.duolingo.com", |
|
"https://www.ted.com/talks", |
|
"https://ocw.mit.edu", |
|
"https://www.open.edu/openlearn", |
|
"https://www.coursebuffet.com", |
|
"https://www.academicearth.org", |
|
"https://www.edutopia.org", |
|
"https://www.saylor.org", |
|
"https://www.openculture.com", |
|
"https://www.gutenberg.org", |
|
"https://www.archive.org", |
|
"https://www.wolframalpha.com", |
|
"https://www.quizlet.com", |
|
"https://www.mathway.com", |
|
"https://www.symbolab.com", |
|
"https://www.lessonplanet.com", |
|
"https://www.teacherspayteachers.com", |
|
"https://www.brainpop.com", |
|
"https://www.ck12.org" |
|
] |
|
|
|
def search_web(query: str, num_results: int = 30, max_retries: int = 3) -> List[Dict[str, str]]: |
|
user_agents = [ |
|
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36', |
|
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Safari/605.1.15', |
|
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.101 Safari/537.36' |
|
] |
|
|
|
for attempt in range(max_retries): |
|
try: |
|
headers = {'User-Agent': random.choice(user_agents)} |
|
service = build("customsearch", "v1", developerKey=GOOGLE_API_KEY) |
|
res = service.cse().list(q=query, cx=GOOGLE_CSE_ID, num=num_results).execute() |
|
|
|
results = [] |
|
if "items" in res: |
|
for item in res["items"]: |
|
result = { |
|
"title": item["title"], |
|
"link": item["link"], |
|
"snippet": item.get("snippet", "") |
|
} |
|
results.append(result) |
|
|
|
return results |
|
except Exception as e: |
|
print(f"An error occurred: {e}. Attempt {attempt + 1} of {max_retries}") |
|
time.sleep(2 ** attempt) |
|
|
|
print("Max retries reached. No results found.") |
|
return [] |
|
|
|
def scrape_webpage(url: str) -> str: |
|
try: |
|
response = requests.get(url, timeout=10) |
|
soup = BeautifulSoup(response.content, 'html.parser') |
|
return soup.get_text() |
|
except Exception as e: |
|
print(f"Error scraping {url}: {e}") |
|
return "" |
|
|
|
def process_documents(uploaded_files): |
|
documents = [] |
|
for uploaded_file in uploaded_files: |
|
file_extension = os.path.splitext(uploaded_file.name)[1].lower() |
|
|
|
if file_extension == '.pdf': |
|
loader = PyPDFLoader(uploaded_file) |
|
elif file_extension in ['.txt', '.md']: |
|
loader = TextLoader(uploaded_file) |
|
elif file_extension in ['.doc', '.docx']: |
|
loader = UnstructuredWordDocumentLoader(uploaded_file) |
|
else: |
|
st.warning(f"Unsupported file type: {file_extension}") |
|
continue |
|
|
|
documents.extend(loader.load()) |
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) |
|
texts = text_splitter.split_documents(documents) |
|
|
|
vectorstore = FAISS.from_documents(texts, embeddings) |
|
graph = NetworkxEntityGraph() |
|
graph.add_documents(texts) |
|
|
|
retriever = vectorstore.as_retriever(search_kwargs={"k": 5}) |
|
|
|
qa_chain = RetrievalQA.from_chain_type( |
|
llm=chat, |
|
chain_type="stuff", |
|
retriever=retriever, |
|
return_source_documents=True |
|
) |
|
|
|
return qa_chain, graph |
|
|
|
def generate_questions(topic, difficulty, num_questions, include_answers, qa_chain=None, graph=None): |
|
system_prompt = f"""You are an expert exam question generator. Generate {num_questions} {difficulty}-level questions about {topic}. |
|
{"Each question should be followed by its correct answer." if include_answers else "Do not include answers."} |
|
Format your response as follows: |
|
|
|
Q1. [Question] |
|
{"A1. [Answer]" if include_answers else ""} |
|
|
|
Q2. [Question] |
|
{"A2. [Answer]" if include_answers else ""} |
|
|
|
... and so on. |
|
""" |
|
|
|
if qa_chain and graph: |
|
context = graph.get_relevant_documents(topic) |
|
context_text = "\n".join([doc.page_content for doc in context]) |
|
|
|
result = qa_chain({"query": system_prompt, "context": context_text}) |
|
questions = result['result'] |
|
else: |
|
messages = [ |
|
SystemMessage(content=system_prompt), |
|
HumanMessage(content=f"Please generate {num_questions} {difficulty} questions about {topic}.") |
|
] |
|
questions = chat(messages).content |
|
|
|
return questions |
|
|
|
def gather_resources(field: str) -> List[Dict[str, str]]: |
|
resources = [] |
|
for resource_url in EDUCATIONAL_RESOURCES: |
|
search_results = search_web(f"site:{resource_url} {field}", num_results=1) |
|
if search_results: |
|
result = search_results[0] |
|
content = scrape_webpage(result['link']) |
|
resources.append({ |
|
"title": result['title'], |
|
"link": result['link'], |
|
"content": content[:500] + "..." if len(content) > 500 else content |
|
}) |
|
|
|
|
|
youtube = build('youtube', 'v3', developerKey=YOUTUBE_API_KEY) |
|
youtube_results = youtube.search().list(q=field, type='video', part='id,snippet', maxResults=5).execute() |
|
for item in youtube_results.get('items', []): |
|
video_id = item['id']['videoId'] |
|
resources.append({ |
|
"title": item['snippet']['title'], |
|
"link": f"https://www.youtube.com/watch?v={video_id}", |
|
"content": item['snippet']['description'], |
|
"thumbnail": item['snippet']['thumbnails']['medium']['url'] |
|
}) |
|
|
|
return resources |
|
|
|
def main(): |
|
st.set_page_config(page_title="Advanced Exam Preparation System", layout="wide") |
|
|
|
st.sidebar.title("Advanced Exam Prep") |
|
st.sidebar.markdown(""" |
|
Welcome to our advanced exam preparation system! |
|
Here you can generate practice questions, explore educational resources, |
|
and interact with an AI tutor to enhance your learning experience. |
|
""") |
|
|
|
|
|
tab1, tab2, tab3 = st.tabs(["Question Generator", "Resource Explorer", "Academic Tutor"]) |
|
|
|
with tab1: |
|
st.header("Question Generator") |
|
col1, col2 = st.columns(2) |
|
with col1: |
|
topic = st.text_input("Enter the exam topic:") |
|
exam_type = st.selectbox("Select exam type:", ["General", "STEM", "Humanities", "Business", "Custom"]) |
|
with col2: |
|
difficulty = st.select_slider( |
|
"Select difficulty level:", |
|
options=["Super Easy", "Easy", "Beginner", "Intermediate", "Higher Intermediate", "Master", "Advanced"] |
|
) |
|
num_questions = st.number_input("Number of questions:", min_value=1, max_value=50, value=5) |
|
include_answers = st.checkbox("Include answers", value=True) |
|
|
|
if st.button("Generate Questions", key="generate_questions"): |
|
if topic: |
|
with st.spinner("Generating questions..."): |
|
questions = generate_questions(topic, difficulty, num_questions, include_answers) |
|
st.success("Questions generated successfully!") |
|
st.markdown(questions) |
|
else: |
|
st.warning("Please enter a topic.") |
|
|
|
with tab2: |
|
st.header("Resource Explorer") |
|
selected_field = st.selectbox("Select a field to explore:", FIELDS) |
|
if st.button("Explore Resources", key="explore_resources"): |
|
with st.spinner("Gathering resources..."): |
|
resources = gather_resources(selected_field) |
|
st.success(f"Found {len(resources)} resources!") |
|
|
|
for i, resource in enumerate(resources): |
|
col1, col2 = st.columns([1, 3]) |
|
with col1: |
|
if "thumbnail" in resource: |
|
st.image(resource["thumbnail"], use_column_width=True) |
|
else: |
|
st.image("https://via.placeholder.com/150", use_column_width=True) |
|
with col2: |
|
st.subheader(f"[{resource['title']}]({resource['link']})") |
|
st.write(resource['content']) |
|
st.markdown("---") |
|
|
|
with tab3: |
|
st.header("Academic Tutor") |
|
uploaded_files = st.file_uploader("Upload documents (PDF, TXT, MD, DOC, DOCX)", type=["pdf", "txt", "md", "doc", "docx"], accept_multiple_files=True) |
|
|
|
if uploaded_files: |
|
qa_chain, graph = process_documents(uploaded_files) |
|
st.success("Documents processed successfully!") |
|
else: |
|
qa_chain, graph = None, None |
|
|
|
st.subheader("Chat with AI Tutor") |
|
if 'chat_history' not in st.session_state: |
|
st.session_state.chat_history = [] |
|
|
|
chat_container = st.container() |
|
with chat_container: |
|
for i, (role, message) in enumerate(st.session_state.chat_history): |
|
with st.chat_message(role): |
|
st.write(message) |
|
|
|
user_input = st.chat_input("Ask a question or type 'search: your query' to perform a web search:") |
|
if user_input: |
|
st.session_state.chat_history.append(("user", user_input)) |
|
with st.chat_message("user"): |
|
st.write(user_input) |
|
|
|
with st.chat_message("assistant"): |
|
if user_input.lower().startswith("search:"): |
|
search_query = user_input[7:].strip() |
|
search_results = search_web(search_query, num_results=3) |
|
response = f"Here are some search results for '{search_query}':\n\n" |
|
for result in search_results: |
|
response += f"- [{result['title']}]({result['link']})\n {result['snippet']}\n\n" |
|
else: |
|
response = chat([HumanMessage(content=user_input)]).content |
|
st.write(response) |
|
st.session_state.chat_history.append(("assistant", response)) |
|
|
|
|
|
js = f""" |
|
<script> |
|
function scroll_to_bottom() {{ |
|
var chatElement = window.parent.document.querySelector('.stChatFloatingInputContainer'); |
|
chatElement.scrollIntoView({{behavior: 'smooth'}}); |
|
}} |
|
scroll_to_bottom(); |
|
</script> |
|
""" |
|
st.components.v1.html(js) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|