|
import streamlit as st
|
|
import requests
|
|
from datetime import datetime, timedelta
|
|
import pandas as pd
|
|
from dotenv import load_dotenv
|
|
import os
|
|
|
|
|
|
load_dotenv()
|
|
|
|
|
|
SCOPUS_API_KEY = "8e94f85eb6044ef1cde06e8b5a426a09"
|
|
|
|
def search_scopus(query, start_year, end_year, max_results=50):
|
|
base_url = "https://api.elsevier.com/content/search/scopus"
|
|
|
|
params = {
|
|
"query": query,
|
|
"date": f"{start_year}-{end_year}",
|
|
"count": max_results,
|
|
"sort": "citedby-count desc",
|
|
"field": "title,author,year,publicationName,description,citedby-count,doi,eid"
|
|
}
|
|
|
|
headers = {
|
|
"X-ELS-APIKey": SCOPUS_API_KEY,
|
|
"Accept": "application/json"
|
|
}
|
|
|
|
try:
|
|
response = requests.get(base_url, params=params, headers=headers)
|
|
response.raise_for_status()
|
|
return response.json()["search-results"]["entry"]
|
|
except requests.exceptions.RequestException as e:
|
|
st.error(f"An error occurred while searching Scopus: {e}")
|
|
return []
|
|
|
|
def format_authors(author_info):
|
|
if isinstance(author_info, list):
|
|
return ", ".join([author.get("authname", "") for author in author_info])
|
|
elif isinstance(author_info, dict):
|
|
return author_info.get("authname", "")
|
|
else:
|
|
return "N/A"
|
|
|
|
def safe_get(dictionary, keys, default="N/A"):
|
|
for key in keys:
|
|
if isinstance(dictionary, dict) and key in dictionary:
|
|
dictionary = dictionary[key]
|
|
else:
|
|
return default
|
|
return dictionary
|
|
|
|
def get_paper_link(paper):
|
|
doi = safe_get(paper, ["prism:doi"])
|
|
if doi != "N/A":
|
|
return f"https://doi.org/{doi}"
|
|
eid = safe_get(paper, ["eid"])
|
|
if eid != "N/A":
|
|
return f"https://www.scopus.com/record/display.uri?eid={eid}&origin=resultslist"
|
|
return "#"
|
|
|
|
def main():
|
|
st.set_page_config(page_title="S.H.E.R.L.O.C.K. Research Assistant", page_icon="🔬", layout="wide")
|
|
|
|
st.sidebar.title("S.H.E.R.L.O.C.K.")
|
|
st.sidebar.markdown("""
|
|
**S**ystematic **H**olistic **E**ducational **R**esource for **L**iterature and **O**ptimizing **C**ognitive **K**nowledge
|
|
|
|
Enhance your research capabilities with AI-powered literature search and analysis.
|
|
""")
|
|
|
|
query = st.sidebar.text_input("What topic would you like to research?", "")
|
|
|
|
current_year = datetime.now().year
|
|
start_year, end_year = st.sidebar.slider(
|
|
"Publication Year Range",
|
|
min_value=1900,
|
|
max_value=current_year,
|
|
value=(current_year-5, current_year)
|
|
)
|
|
|
|
max_results = st.sidebar.slider("Maximum number of results", 10, 100, 50)
|
|
|
|
search_button = st.sidebar.button("Search for Research Papers")
|
|
|
|
st.title("Research Papers and Articles")
|
|
|
|
if search_button and query:
|
|
with st.spinner("Searching for the most relevant research papers..."):
|
|
results = search_scopus(query, start_year, end_year, max_results)
|
|
|
|
if results:
|
|
papers = []
|
|
for paper in results:
|
|
papers.append({
|
|
"Title": safe_get(paper, ["dc:title"]),
|
|
"Authors": format_authors(safe_get(paper, ["author"])),
|
|
"Year": safe_get(paper, ["prism:coverDate"])[:4],
|
|
"Journal": safe_get(paper, ["prism:publicationName"]),
|
|
"Abstract": safe_get(paper, ["dc:description"]),
|
|
"Citations": safe_get(paper, ["citedby-count"], "0"),
|
|
"Link": get_paper_link(paper)
|
|
})
|
|
|
|
df = pd.DataFrame(papers)
|
|
|
|
st.markdown(f"### Found {len(results)} papers on '{query}'")
|
|
|
|
for _, paper in df.iterrows():
|
|
with st.container():
|
|
col1, col2 = st.columns([3, 1])
|
|
with col1:
|
|
st.markdown(f"#### [{paper['Title']}]({paper['Link']})")
|
|
st.markdown(f"**Authors:** {paper['Authors']}")
|
|
st.markdown(f"**Published in:** {paper['Journal']} ({paper['Year']})")
|
|
st.markdown(f"**Abstract:** {paper['Abstract']}")
|
|
with col2:
|
|
st.metric("Citations", paper["Citations"])
|
|
|
|
st.markdown("---")
|
|
|
|
|
|
csv = df.to_csv(index=False).encode('utf-8')
|
|
st.download_button(
|
|
label="Download results as CSV",
|
|
data=csv,
|
|
file_name=f"{query.replace(' ', '_')}_research_papers.csv",
|
|
mime="text/csv",
|
|
)
|
|
else:
|
|
st.warning("No results found. Please try a different search query or adjust the year range.")
|
|
|
|
if __name__ == "__main__":
|
|
main() |