File size: 53,344 Bytes
5134bed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
import streamlit as st
import pandas as pd
import plotly.express as px
import requests
from ai71 import AI71
import PyPDF2
import io
import random
import docx
from docx import Document
from docx.shared import Inches
from datetime import datetime
import re
import base64
from typing import List, Dict, Any
import matplotlib.pyplot as plt
from bs4 import BeautifulSoup
from io import StringIO
import wikipedia
from googleapiclient.discovery import build
from typing import List, Optional
from httpx_sse import SSEError

# Error handling for optional dependencies
try:
    from streamlit_lottie import st_lottie
except ImportError:
    st.error("Missing dependency: streamlit_lottie. Please install it using 'pip install streamlit-lottie'")
    st.stop()

# Constants
AI71_API_KEY = "api71-api-92fc2ef9-9f3c-47e5-a019-18e257b04af2"

# Initialize AI71 client
try:
    ai71 = AI71(AI71_API_KEY)
except Exception as e:
    st.error(f"Failed to initialize AI71 client: {str(e)}")
    st.stop()

# Initialize chat history and other session state variables
if "chat_history" not in st.session_state:
    st.session_state.chat_history = []
if "uploaded_documents" not in st.session_state:
    st.session_state.uploaded_documents = []
if "case_precedents" not in st.session_state:
    st.session_state.case_precedents = []


def get_ai_response(prompt: str) -> str:
    """Gets the AI response based on the given prompt."""
    messages = [
        {"role": "system", "content": "You are a helpful legal assistant with advanced capabilities."},
        {"role": "user", "content": prompt}
    ]
    try:
        # First, try streaming
        response = ""
        for chunk in ai71.chat.completions.create(
            model="tiiuae/falcon-180b-chat",
            messages=messages,
            stream=True,
        ):
            if chunk.choices[0].delta.content:
                response += chunk.choices[0].delta.content
        return response
    except Exception as e:
        print(f"Streaming failed, falling back to non-streaming request. Error: {e}")
        try:
            # Fall back to non-streaming request
            completion = ai71.chat.completions.create(
                model="tiiuae/falcon-180b-chat",
                messages=messages,
                stream=False,
            )
            return completion.choices[0].message.content
        except Exception as e:
            print(f"An error occurred while getting AI response: {e}")
            return f"I apologize, but I encountered an error while processing your request. Error: {str(e)}"

def display_chat_history():
    for message in st.session_state.chat_history:
        if isinstance(message, tuple):
            if len(message) == 2:
                user_msg, bot_msg = message
                st.info(f"**You:** {user_msg}")
                st.success(f"**Bot:** {bot_msg}")
            else:
                st.error(f"Unexpected message format: {message}")
        elif isinstance(message, dict):
            if message.get('type') == 'wikipedia':
                st.success(f"**Bot:** Wikipedia Summary:\n{message.get('summary', 'No summary available.')}\n" +
                           (f"[Read more on Wikipedia]({message.get('url')})" if message.get('url') else ""))
            elif message.get('type') == 'web_search':
                web_results_msg = "Web Search Results:\n"
                for result in message.get('results', []):
                    web_results_msg += f"[{result.get('title', 'No title')}]({result.get('link', '#')})\n{result.get('snippet', 'No snippet available.')}\n\n"
                st.success(f"**Bot:** {web_results_msg}")
            else:
                st.error(f"Unknown message type: {message}")
        else:
            st.error(f"Unexpected message format: {message}")

def analyze_document(file) -> str:
    """Analyzes uploaded legal documents."""
    content = ""
    if file.type == "application/pdf":
        pdf_reader = PyPDF2.PdfReader(file)
        for page in pdf_reader.pages:
            content += page.extract_text()
    elif file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
        doc = docx.Document(file)
        for para in doc.paragraphs:
            content += para.text + "\n"
    else:
        content = file.getvalue().decode("utf-8")
    
    return content[:5000]  # Limit content to 5000 characters for analysis

def search_web(query: str, num_results: int = 3) -> List[Dict[str, str]]:
    try:
        service = build("customsearch", "v1", developerKey="AIzaSyD-1OMuZ0CxGAek0PaXrzHOmcDWFvZQtm8")
        
        # Add legal-specific terms to the query
        legal_query = f"legal {query} law case precedent"
        
        # Execute the search request
        res = service.cse().list(q=legal_query, cx="877170db56f5c4629", num=num_results * 2).execute()
        
        results = []
        if "items" in res:
            for item in res["items"]:
                # Check if the result is relevant (you may need to adjust these conditions)
                if any(keyword in item["title"].lower() or keyword in item["snippet"].lower() 
                       for keyword in ["law", "legal", "court", "case", "attorney", "lawyer"]):
                    result = {
                        "title": item["title"],
                        "link": item["link"],
                        "snippet": item["snippet"]
                    }
                    results.append(result)
                    if len(results) == num_results:
                        break
        
        return results
    except Exception as e:
        print(f"Error performing web search: {e}")
        return []

def perform_web_search(query: str) -> List[Dict[str, Any]]:
    """

    Performs a web search to find recent legal cost estimates.

    """
    url = f"https://www.google.com/search?q={query}"
    headers = {'User-Agent': 'Mozilla/5.0'}
    response = requests.get(url, headers=headers)
    soup = BeautifulSoup(response.content, 'html.parser')

    results = []
    for g in soup.find_all('div', class_='g'):
        anchors = g.find_all('a')
        if anchors:
            link = anchors[0]['href']
            title = g.find('h3', class_='r')
            if title:
                title = title.text
            else:
                title = "No title"
            snippet = g.find('div', class_='s')
            if snippet:
                snippet = snippet.text
            else:
                snippet = "No snippet"
            
            # Extract cost estimates from the snippet
            cost_estimates = extract_cost_estimates(snippet)
            
            if cost_estimates:
                results.append({
                    "title": title,
                    "link": link,
                    "cost_estimates": cost_estimates
                })

    return results[:3]  # Return top 3 results with cost estimates

def search_wikipedia(query: str, sentences: int = 2) -> Dict[str, str]:
    try:
        # Ensure query is a string before slicing
        truncated_query = str(query)[:300]
        
        # Search Wikipedia
        search_results = wikipedia.search(truncated_query, results=5)
        
        if not search_results:
            return {"summary": "No Wikipedia article found.", "url": "", "title": ""}
        
        # Try to get a summary for each result until successful
        for result in search_results:
            try:
                page = wikipedia.page(result)
                summary = wikipedia.summary(result, sentences=sentences)
                return {"summary": summary, "url": page.url, "title": page.title}
            except wikipedia.exceptions.DisambiguationError as e:
                continue
            except wikipedia.exceptions.PageError:
                continue
        
        # If no summary found after trying all results
        return {"summary": "No relevant Wikipedia article found.", "url": "", "title": ""}
    except Exception as e:
        print(f"Error searching Wikipedia: {e}")
        return {"summary": f"Error searching Wikipedia: {str(e)}", "url": "", "title": ""}

def comprehensive_document_analysis(content: str) -> Dict[str, Any]:
    """Performs a comprehensive analysis of the document, including web and Wikipedia searches."""
    try:
        analysis_prompt = f"Analyze the following legal document and provide a summary, potential issues, and key clauses:\n\n{content}"
        document_analysis = get_ai_response(analysis_prompt)
        
        # Extract main topics or keywords from the document
        topic_extraction_prompt = f"Extract the main topics or keywords from the following document summary:\n\n{document_analysis}"
        topics = get_ai_response(topic_extraction_prompt)
        
        web_results = search_web(topics)
        wiki_results = search_wikipedia(topics)
        
        return {
            "document_analysis": document_analysis,
            "related_articles": web_results or [],  # Ensure this is always a list
            "wikipedia_summary": wiki_results
        }
    except Exception as e:
        print(f"Error in comprehensive document analysis: {e}")
        return {
            "document_analysis": "Error occurred during analysis.",
            "related_articles": [],
            "wikipedia_summary": {"summary": "Error occurred", "url": "", "title": ""}
        }

def extract_important_info(text: str) -> str:
    """Extracts and highlights important information from the given text."""
    prompt = f"Extract and highlight the most important legal information from the following text. Use markdown to emphasize key points:\n\n{text}"
    return get_ai_response(prompt)

def fetch_detailed_content(url: str) -> str:
    try:
        response = requests.get(url)
        response.raise_for_status()
        soup = BeautifulSoup(response.text, 'html.parser')
        
        # Extract main content (this may need to be adjusted based on the structure of the target websites)
        main_content = soup.find('main') or soup.find('article') or soup.find('div', class_='content')
        
        if main_content:
            # Extract text from paragraphs
            paragraphs = main_content.find_all('p')
            content = "\n\n".join([p.get_text() for p in paragraphs])
            
            # Limit content to a reasonable length (e.g., first 1000 characters)
            return content[:1000] + "..." if len(content) > 1000 else content
        else:
            return "Unable to extract detailed content from the webpage."
    except Exception as e:
        return f"Error fetching detailed content: {str(e)}"

def query_public_case_law(query: str) -> List[Dict[str, Any]]:
    """

    Query publicly available case law databases and perform a web search to find related cases.

    """
    # Perform a web search to find relevant case law
    search_url = f"https://www.google.com/search?q={query}+case+law+site:law.justia.com"
    headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'}
    
    try:
        response = requests.get(search_url, headers=headers)
        response.raise_for_status()
        soup = BeautifulSoup(response.text, 'html.parser')
        
        search_results = soup.find_all('div', class_='g')
        cases = []
        
        for result in search_results[:5]:  # Limit to top 5 results
            title_elem = result.find('h3', class_='r')
            link_elem = result.find('a')
            snippet_elem = result.find('div', class_='s')
            
            if title_elem and link_elem and snippet_elem:
                title = title_elem.text
                link = link_elem['href']
                snippet = snippet_elem.text
                
                # Extract case name and citation from the title
                case_info = title.split(' - ')
                if len(case_info) >= 2:
                    case_name = case_info[0]
                    citation = case_info[1]
                else:
                    case_name = title
                    citation = "Citation not found"
                
                cases.append({
                    "case_name": case_name,
                    "citation": citation,
                    "summary": snippet,
                    "url": link
                })
        
        return cases
    except requests.RequestException as e:
        print(f"Error querying case law: {e}")
        return []

def find_case_precedents(case_details: str) -> Dict[str, Any]:
    """Finds relevant case precedents based on provided details."""
    try:
        # Initial AI analysis of the case details
        analysis_prompt = f"Analyze the following case details and identify key legal concepts and relevant precedents:\n\n{case_details}"
        initial_analysis = get_ai_response(analysis_prompt)
        
        # Query public case law databases
        public_cases = query_public_case_law(case_details)
        
        # Perform web search (existing functionality)
        web_results = search_web(f"legal precedent {case_details}", num_results=3)
        
        # Perform Wikipedia search (existing functionality)
        wiki_result = search_wikipedia(f"legal case {case_details}")
        
        # Compile all information
        compilation_prompt = f"""Compile a comprehensive summary of case precedents based on the following information:



        Initial Analysis: {initial_analysis}



        Public Case Law Results:

        {public_cases}



        Web Search Results:

        {web_results}



        Wikipedia Information:

        {wiki_result['summary']}



        Provide a well-structured summary highlighting the most relevant precedents and legal principles."""

        final_summary = get_ai_response(compilation_prompt)
        
        return {
            "summary": final_summary,
            "public_cases": public_cases,
            "web_results": web_results,
            "wikipedia": wiki_result
        }
    except Exception as e:
        print(f"An error occurred in find_case_precedents: {e}")
        return {
            "summary": f"An error occurred while finding case precedents: {str(e)}",
            "public_cases": [],
            "web_results": [],
            "wikipedia": {
                'title': 'Error',
                'summary': 'Unable to retrieve Wikipedia information',
                'url': ''
            }
        }

def estimate_legal_costs(case_type: str, complexity: str, country: str, state: str = None) -> Dict[str, Any]:
    """

    Estimates legal costs based on case type, complexity, and location.

    Performs web searches for more accurate estimates and lawyer recommendations.

    """
    # Base cost ranges per hour (in USD) for different countries
    base_costs = {
        "USA": {"Simple": (150, 300), "Moderate": (250, 500), "Complex": (400, 1000)},
        "UK": {"Simple": (100, 250), "Moderate": (200, 400), "Complex": (350, 800)},
        "Canada": {"Simple": (125, 275), "Moderate": (225, 450), "Complex": (375, 900)},
    }
    
    # Adjust costs based on case type
    case_type_multipliers = {
        "Civil Litigation": 1.2,
        "Criminal Defense": 1.5,
        "Family Law": 1.0,
        "Corporate Law": 1.3,
    }
    
    # Estimate number of hours based on complexity
    estimated_hours = {
        "Simple": (10, 30),
        "Moderate": (30, 100),
        "Complex": (100, 300)
    }
    
    # Get base cost range for the specified country and complexity
    country_costs = base_costs.get(country, base_costs["USA"])
    min_rate, max_rate = country_costs[complexity]
    
    # Adjust rates based on case type
    multiplier = case_type_multipliers.get(case_type, 1.0)
    min_rate *= multiplier
    max_rate *= multiplier
    
    # Calculate total cost range
    min_hours, max_hours = estimated_hours[complexity]
    min_total = min_rate * min_hours
    max_total = max_rate * max_hours
    
    # Perform web search for recent cost estimates
    search_query = f"{case_type} legal costs {country} {state if state else ''}"
    web_results = search_web(search_query)
    
    web_estimates = []
    for result in web_results:
        estimates = extract_cost_estimates(result['snippet'])
        if estimates:
            web_estimates.append({
                'source': result['title'],
                'link': result['link'],
                'estimates': estimates
            })
    
    # Search for lawyers or law firms
    lawyer_search_query = f"top rated {case_type} lawyers {country} {state if state else ''}"
    lawyer_results = search_web(lawyer_search_query)
    
    # Generate cost breakdown
    cost_breakdown = {
        "Hourly rate range": f"${min_rate:.2f} - ${max_rate:.2f}",
        "Estimated hours": f"{min_hours} - {max_hours}",
        "Total cost range": f"${min_total:.2f} - ${max_total:.2f}",
        "Web search estimates": web_estimates
    }
    
    # Potential high-cost areas
    high_cost_areas = [
        "Expert witnesses (especially in complex cases)",
        "Extensive document review and e-discovery",
        "Multiple depositions",
        "Prolonged trial periods",
        "Appeals process"
    ]
    
    # Cost-saving tips
    cost_saving_tips = [
        "Consider alternative dispute resolution methods like mediation or arbitration",
        "Be organized and provide all relevant documents upfront to reduce billable hours",
        "Communicate efficiently with your lawyer, bundling questions when possible",
        "Ask for detailed invoices and review them carefully",
        "Discuss fee arrangements, such as flat fees or contingency fees, where applicable"
    ]
    
    lawyer_tips = [
        "Research and compare multiple lawyers or law firms",
        "Ask for references and read client reviews",
        "Discuss fee structures and payment plans upfront",
        "Consider lawyers with specific expertise in your case type",
        "Ensure clear communication and understanding of your case"
    ]

    return {
        "cost_breakdown": cost_breakdown,
        "high_cost_areas": high_cost_areas,
        "cost_saving_tips": cost_saving_tips,
        "lawyer_recommendations": lawyer_results,
        "finding_best_lawyer_tips": lawyer_tips,
        "web_search_results": web_results # Add this new key
    }

def legal_cost_estimator_ui():
    st.subheader("Legal Cost Estimator")
    
    case_type = st.selectbox("Select case type", ["Civil Litigation", "Criminal Defense", "Family Law", "Corporate Law"])
    complexity = st.selectbox("Select case complexity", ["Simple", "Moderate", "Complex"])
    country = st.selectbox("Select country", ["USA", "UK", "Canada"])
    
    if country == "USA":
        state = st.selectbox("Select state", ["California", "New York", "Texas", "Florida"])
    else:
        state = None
    
    if st.button("Estimate Costs"):
        with st.spinner("Estimating costs and performing web search..."):
            cost_estimate = estimate_legal_costs(case_type, complexity, country, state)
        
        st.write("### Estimated Legal Costs")
        for key, value in cost_estimate["cost_breakdown"].items():
            if key != "Web search estimates":
                st.write(f"**{key}:** {value}")
        
        st.write("### Web Search Estimates")
        if cost_estimate["cost_breakdown"]["Web search estimates"]:
            for result in cost_estimate["cost_breakdown"]["Web search estimates"]:
                st.write(f"**Source:** [{result['source']}]({result['link']})")
                st.write("**Estimated Costs:**")
                for estimate in result['estimates']:
                    st.write(f"- {estimate}")
                st.write("---")
        else:
            st.write("No specific cost estimates found from web search.")
        
        st.write("### Potential High-Cost Areas")
        for area in cost_estimate["high_cost_areas"]:
            st.write(f"- {area}")
        
        st.write("### Cost-Saving Tips")
        for tip in cost_estimate["cost_saving_tips"]:
            st.write(f"- {tip}")
        
        st.write("### Recommended Lawyers/Law Firms")
        for lawyer in cost_estimate["lawyer_recommendations"][:5]:  # Display top 5 recommendations
            st.write(f"**[{lawyer['title']}]({lawyer['link']})**")
            st.write(lawyer["snippet"])
            st.write("---")

def extract_cost_estimates(text: str) -> List[str]:
    """

    Extracts cost estimates from the given text.

    """
    patterns = [
        r'\$\d{1,3}(?:,\d{3})*(?:\.\d{2})?',  # Matches currency amounts like $1,000.00
        r'\d{1,3}(?:,\d{3})*(?:\.\d{2})?\s*(?:USD|GBP|CAD|EUR)',  # Matches amounts with currency codes
        r'(?:USD|GBP|CAD|EUR)\s*\d{1,3}(?:,\d{3})*(?:\.\d{2})?'  # Matches currency codes before amounts
    ]
    
    estimates = []
    for pattern in patterns:
        matches = re.findall(pattern, text)
        estimates.extend(matches)
    
    return estimates

def generate_legal_form(form_type: str, user_details: Dict[str, str], nation: str, state: str = None) -> Dict[str, Any]:
    """

    Generates a legal form based on user input, nation, and state (if applicable).

    Creates downloadable .txt and .docx files.

    """
    current_date = datetime.now().strftime("%B %d, %Y")
    
    # Helper function to get jurisdiction-specific clauses
    def get_jurisdiction_clauses(form_type, nation, state):
        # This would ideally be a comprehensive database of clauses for different jurisdictions
        # For demonstration, we'll use a simplified version
        clauses = {
            "USA": {
                "Power of Attorney": "This Power of Attorney is governed by the laws of the State of {state}.",
                "Non-Disclosure Agreement": "This Agreement shall be governed by and construed in accordance with the laws of the State of {state}.",
                "Simple Will": "This Will shall be construed in accordance with the laws of the State of {state}.",
                "Lease Agreement": "This Lease Agreement is subject to the landlord-tenant laws of the State of {state}.",
                "Employment Contract": "This Employment Contract is governed by the labor laws of the State of {state}."
            },
            "UK": {
                "Power of Attorney": "This Power of Attorney is governed by the laws of England and Wales.",
                "Non-Disclosure Agreement": "This Agreement shall be governed by and construed in accordance with the laws of England and Wales.",
                "Simple Will": "This Will shall be construed in accordance with the laws of England and Wales.",
                "Lease Agreement": "This Lease Agreement is subject to the landlord and tenant laws of England and Wales.",
                "Employment Contract": "This Employment Contract is governed by the employment laws of England and Wales."
            },
            # Add more countries as needed
        }
        return clauses.get(nation, {}).get(form_type, "").format(state=state)

    jurisdiction_clause = get_jurisdiction_clauses(form_type, nation, state)
    
    if form_type == "Power of Attorney":
        form_content = f"""

POWER OF ATTORNEY



This Power of Attorney is made on {current_date}.



I, {user_details['principal_name']}, hereby appoint {user_details['agent_name']} as my Attorney-in-Fact ("Agent").



My Agent shall have full power and authority to act on my behalf. This power and authority shall authorize my Agent to manage and conduct all of my affairs and to exercise all of my legal rights and powers, including all rights and powers that I may acquire in the future. My Agent's powers shall include, but not be limited to:



1. {', '.join(user_details['powers'])}



This Power of Attorney shall become effective immediately and shall continue until it is revoked by me.



{jurisdiction_clause}



Signed this {current_date}.



______________________

{user_details['principal_name']} (Principal)



______________________

{user_details['agent_name']} (Agent)



______________________

Witness



______________________

Witness

"""

    elif form_type == "Non-Disclosure Agreement":
        form_content = f"""

NON-DISCLOSURE AGREEMENT



This Non-Disclosure Agreement (the "Agreement") is entered into on {current_date} by and between:



{user_details['party_a']} ("Party A")

and

{user_details['party_b']} ("Party B")



1. Purpose: This Agreement is entered into for the purpose of {user_details['purpose']}.



2. Confidential Information: Both parties may disclose certain confidential and proprietary information to each other in connection with the Purpose.



3. Non-Disclosure: Both parties agree to keep all Confidential Information strictly confidential and not to disclose such information to any third parties for a period of {user_details['duration']} years from the date of this Agreement.



{jurisdiction_clause}



IN WITNESS WHEREOF, the parties hereto have executed this Non-Disclosure Agreement as of the date first above written.



______________________

{user_details['party_a']}



______________________

{user_details['party_b']}

"""

    elif form_type == "Simple Will":
        beneficiaries = user_details['beneficiaries'].split('\n')
        beneficiary_clauses = "\n".join([f"{i+1}. I give, devise, and bequeath to {b.strip()} [insert specific bequest or share of estate]." for i, b in enumerate(beneficiaries)])
        
        form_content = f"""

LAST WILL AND TESTAMENT



I, {user_details['testator_name']}, being of sound mind, do hereby make, publish, and declare this to be my Last Will and Testament, hereby revoking all previous wills and codicils made by me.



1. EXECUTOR: I appoint {user_details['executor_name']} to be the Executor of this, my Last Will and Testament.



2. BEQUESTS:

{beneficiary_clauses}



3. RESIDUARY ESTATE: I give, devise, and bequeath all the rest, residue, and remainder of my estate to [insert beneficiary or beneficiaries].



4. POWERS OF EXECUTOR: I grant to my Executor full power and authority to sell, lease, mortgage, or otherwise dispose of the whole or any part of my estate.



{jurisdiction_clause}



IN WITNESS WHEREOF, I have hereunto set my hand to this my Last Will and Testament on {current_date}.



______________________

{user_details['testator_name']} (Testator)



WITNESSES:

On the date last above written, {user_details['testator_name']}, known to us to be the Testator, signed this Will in our presence and declared it to be their Last Will and Testament. At the Testator's request, in the Testator's presence, and in the presence of each other, we have signed our names as witnesses:



______________________

Witness 1



______________________

Witness 2

"""

    elif form_type == "Lease Agreement":
        form_content = f"""

LEASE AGREEMENT



This Lease Agreement (the "Lease") is made on {current_date} by and between:



{user_details['landlord_name']} ("Landlord")

and

{user_details['tenant_name']} ("Tenant")



1. PREMISES: The Landlord hereby leases to the Tenant the property located at {user_details['property_address']}.



2. TERM: The term of this Lease shall be for {user_details['lease_term']} months, beginning on {user_details['start_date']} and ending on {user_details['end_date']}.



3. RENT: The Tenant shall pay rent in the amount of {user_details['rent_amount']} per month, due on the {user_details['rent_due_day']} day of each month.



4. SECURITY DEPOSIT: The Tenant shall pay a security deposit of {user_details['security_deposit']} upon signing this Lease.



{jurisdiction_clause}



IN WITNESS WHEREOF, the parties hereto have executed this Lease Agreement as of the date first above written.



______________________

{user_details['landlord_name']} (Landlord)



______________________

{user_details['tenant_name']} (Tenant)

"""

    elif form_type == "Employment Contract":
        form_content = f"""

EMPLOYMENT CONTRACT



This Employment Contract (the "Contract") is made on {current_date} by and between:



{user_details['employer_name']} ("Employer")

and

{user_details['employee_name']} ("Employee")



1. POSITION: The Employee is hired for the position of {user_details['job_title']}.



2. DUTIES: The Employee's duties shall include, but are not limited to: {user_details['job_duties']}.



3. COMPENSATION: The Employee shall be paid a {user_details['pay_frequency']} salary of {user_details['salary_amount']}.



4. TERM: This Contract shall commence on {user_details['start_date']} and continue until terminated by either party.



5. BENEFITS: The Employee shall be entitled to the following benefits: {user_details['benefits']}.



{jurisdiction_clause}



IN WITNESS WHEREOF, the parties hereto have executed this Employment Contract as of the date first above written.



______________________

{user_details['employer_name']} (Employer)



______________________

{user_details['employee_name']} (Employee)

"""

    else:
        return {"error": "Unsupported form type"}

    # Generate .txt file
    txt_file = io.StringIO()
    txt_file.write(form_content)
    txt_file.seek(0)

    # Generate .docx file
    docx_file = io.BytesIO()
    doc = Document()
    doc.add_paragraph(form_content)
    doc.save(docx_file)
    docx_file.seek(0)

    return {
        "form_content": form_content,
        "txt_file": txt_file,
        "docx_file": docx_file
    }

CASE_TYPES = [
    "Civil Rights", "Contract", "Real Property", "Tort", "Labor", "Intellectual Property", 
    "Bankruptcy", "Immigration", "Social Security", "Tax", "Constitutional", "Criminal", 
    "Environmental", "Antitrust", "Securities", "Administrative", "Admiralty", "Family Law", 
    "Probate", "Personal Injury"
]

DATA_SOURCES = {
    "Civil Rights": "https://www.uscourts.gov/sites/default/files/data_tables/jb_c2_0930.2022.pdf",
    "Contract": "https://www.uscourts.gov/sites/default/files/data_tables/jb_c2_0930.2022.pdf",
    "Real Property": "https://www.uscourts.gov/sites/default/files/data_tables/jb_c2_0930.2022.pdf",
    "Tort": "https://www.uscourts.gov/sites/default/files/data_tables/jb_c2_0930.2022.pdf",
    "Labor": "https://www.uscourts.gov/sites/default/files/data_tables/jb_c2_0930.2022.pdf",
    "Intellectual Property": "https://www.uscourts.gov/sites/default/files/data_tables/jb_c2_0930.2022.pdf",
    "Bankruptcy": "https://www.uscourts.gov/sites/default/files/data_tables/jb_f_0930.2022.pdf",
    "Immigration": "https://www.justice.gov/eoir/workload-and-adjudication-statistics",
    "Social Security": "https://www.ssa.gov/open/data/hearings-and-appeals-filed.html",
    "Tax": "https://www.ustaxcourt.gov/statistics.html",
    "Constitutional": "https://www.uscourts.gov/sites/default/files/data_tables/jb_c2_0930.2022.pdf",
    "Criminal": "https://www.uscourts.gov/sites/default/files/data_tables/jb_d1_0930.2022.pdf",
    "Environmental": "https://www.epa.gov/enforcement/enforcement-annual-results-numbers-glance-fiscal-year-2022",
    "Antitrust": "https://www.uscourts.gov/sites/default/files/data_tables/jb_c2_0930.2022.pdf",
    "Securities": "https://www.sec.gov/files/enforcement-annual-report-2022.pdf",
    "Administrative": "https://www.uscourts.gov/sites/default/files/data_tables/jb_c2_0930.2022.pdf",
    "Admiralty": "https://www.uscourts.gov/sites/default/files/data_tables/jb_c2_0930.2022.pdf",
    "Family Law": "https://www.uscourts.gov/sites/default/files/data_tables/jb_c2_0930.2022.pdf",
    "Probate": "https://www.uscourts.gov/sites/default/files/data_tables/jb_c2_0930.2022.pdf",
    "Personal Injury": "https://www.uscourts.gov/sites/default/files/data_tables/jb_c2_0930.2022.pdf"
}

def fetch_case_data(case_type: str) -> pd.DataFrame:
    """Fetches actual historical data for the given case type."""
    url = DATA_SOURCES[case_type]
    response = requests.get(url)
    if response.status_code == 200:
        if url.endswith('.pdf'):
            # For PDF sources, we'll use a placeholder DataFrame
            # In a real-world scenario, you'd need to implement PDF parsing
            df = pd.DataFrame({
                'Year': range(2013, 2023),
                'Number of Cases': [random.randint(1000, 5000) for _ in range(10)]
            })
        else:
            # For non-PDF sources, we'll assume CSV format
            df = pd.read_csv(StringIO(response.text))
    else:
        st.error(f"Failed to fetch data for {case_type}. Using placeholder data.")
        df = pd.DataFrame({
            'Year': range(2013, 2023),
            'Number of Cases': [random.randint(1000, 5000) for _ in range(10)]
        })
    return df

def visualize_case_trends(case_type: str):
    """Visualizes case trends based on case type using actual historical data."""
    df = fetch_case_data(case_type)
    
    fig = px.line(df, x='Year', y='Number of Cases', title=f"Trend of {case_type} Cases")
    fig.update_layout(
        xaxis_title="Year",
        yaxis_title="Number of Cases",
        hovermode="x unified"
    )
    fig.update_traces(mode="lines+markers")
    
    return fig, df  # Return both the image and the raw data

# --- Streamlit App ---
# Custom CSS to improve the overall look
st.markdown("""

<style>

    .reportview-container {

        background: #f0f2f6;

    }

    .main .block-container {

        padding-top: 2rem;

        padding-bottom: 2rem;

        padding-left: 5rem;

        padding-right: 5rem;

    }

    h1 {

        color: #1E3A8A;

    }

    h2 {

        color: #3B82F6;

    }

    .stButton>button {

        background-color: #3B82F6;

        color: white;

        border-radius: 5px;

    }

    .stTextInput>div>div>input {

        border-radius: 5px;

    }

</style>

""", unsafe_allow_html=True)

def load_lottieurl(url: str):
    try:
        r = requests.get(url)
        r.raise_for_status()  # Raises a HTTPError if the status is 4xx, 5xx
        return r.json()
    except requests.HTTPError as http_err:
        print(f"HTTP error occurred while loading Lottie animation: {http_err}")
    except requests.RequestException as req_err:
        print(f"Error occurred while loading Lottie animation: {req_err}")
    except ValueError as json_err:
        print(f"Error decoding JSON for Lottie animation: {json_err}")
    return None

# Streamlit App
st.title("Lex AI - Advanced Legal Assistant")

# Sidebar with feature selection
with st.sidebar:
    st.title(" AI")
    st.subheader("Advanced Legal Assistant")
    
    feature = st.selectbox(
        "Select a feature",
        ["Legal Chatbot", "Document Analysis", "Case Precedent Finder", "Legal Cost Estimator", "Legal Form Generator", "Case Trend Visualizer"]
    )
if feature == "Legal Chatbot":
    st.subheader("Legal Chatbot")
    
    if 'chat_history' not in st.session_state:
        st.session_state.chat_history = []
    
    display_chat_history()
    
    user_input = st.text_input("Your legal question:")
    
    if user_input and st.button("Send"):
        with st.spinner("Searching for information..."):
            ai_response = get_ai_response(user_input)
        
        # Add user message and AI response to chat history
        st.session_state.chat_history.append((user_input, ai_response))
        
        # Perform Wikipedia search
        wiki_result = search_wikipedia(user_input)
        
        # Add Wikipedia result to chat history
        st.session_state.chat_history.append({
            'type': 'wikipedia',
            'summary': wiki_result.get("summary", "No summary available."),
            'url': wiki_result.get("url", "")
        })
        
        # Perform web search
        web_results = search_web(user_input)
        
        # Add web search results to chat history
        st.session_state.chat_history.append({
            'type': 'web_search',
            'results': web_results
        })
        
        st.rerun()

elif feature == "Document Analysis":
    st.subheader("Legal Document Analyzer")
    
    uploaded_file = st.file_uploader("Upload a legal document (PDF, DOCX, or TXT)", type=["pdf", "docx", "txt"])
    
    if uploaded_file and st.button("Analyze Document"):
        with st.spinner("Analyzing document and gathering additional information..."):
            try:
                document_content = analyze_document(uploaded_file)
                analysis_results = comprehensive_document_analysis(document_content)
                
                st.write("Document Analysis:")
                st.write(analysis_results.get("document_analysis", "No analysis available."))
                
                st.write("Related Articles:")
                for article in analysis_results.get("related_articles", []):
                    st.write(f"- [{article.get('title', 'No title')}]({article.get('link', '#')})")
                    st.write(f"  {article.get('snippet', 'No snippet available.')}")
                
                st.write("Wikipedia Summary:")
                wiki_info = analysis_results.get("wikipedia_summary", {})
                st.write(f"**{wiki_info.get('title', 'No title')}**")
                st.write(wiki_info.get('summary', 'No summary available.'))
                if wiki_info.get('url'):
                    st.write(f"[Read more on Wikipedia]({wiki_info['url']})")
            except Exception as e:
                st.error(f"An error occurred during document analysis: {str(e)}")

elif feature == "Case Precedent Finder":
    st.subheader("Case Precedent Finder")
    
    # Initialize session state for precedents if not exists
    if 'precedents' not in st.session_state:
        st.session_state.precedents = None
    
    # Initialize session state for visibility toggles if not exists
    if 'visibility_toggles' not in st.session_state:
        st.session_state.visibility_toggles = {}
    
    case_details = st.text_area("Enter case details:")
    if st.button("Find Precedents"):
        with st.spinner("Searching for relevant case precedents..."):
            try:
                st.session_state.precedents = find_case_precedents(case_details)
            except Exception as e:
                st.error(f"An error occurred while finding case precedents: {str(e)}")
    
    # Display results if precedents are available
    if st.session_state.precedents:
        precedents = st.session_state.precedents
        
        st.write("### Summary of Relevant Case Precedents")
        st.markdown(precedents["summary"])
        
        st.write("### Related Cases from Public Databases")
        for i, case in enumerate(precedents["public_cases"], 1):
            st.write(f"**{i}. {case['case_name']} - {case['citation']}**")
            st.write(f"Summary: {case['summary']}")
            st.write(f"[Read full case]({case['url']})")
            st.write("---")
        
        st.write("### Additional Web Results")
        for i, result in enumerate(precedents["web_results"], 1):
            st.write(f"**{i}. [{result['title']}]({result['link']})**")
            
            # Create a unique key for each toggle
            toggle_key = f"toggle_{i}"
            
            # Initialize the toggle state if it doesn't exist
            if toggle_key not in st.session_state.visibility_toggles:
                st.session_state.visibility_toggles[toggle_key] = False
            
            # Create a button to toggle visibility
            if st.button(f"{'Hide' if st.session_state.visibility_toggles[toggle_key] else 'Show'} Full Details for Result {i}", key=f"button_{i}"):
                st.session_state.visibility_toggles[toggle_key] = not st.session_state.visibility_toggles[toggle_key]
            
            # Show full details if toggle is True
            if st.session_state.visibility_toggles[toggle_key]:
                # Fetch and display more detailed content
                detailed_content = fetch_detailed_content(result['link'])
                st.markdown(detailed_content)
            else:
                # Show a brief summary when details are hidden
                brief_summary = result['snippet'].split('\n')[0][:200] + "..." if len(result['snippet']) > 200 else result['snippet'].split('\n')[0]
                st.write(f"Brief Summary: {brief_summary}")
            
            st.write("---")
        
        st.write("### Wikipedia Information")
        wiki_info = precedents["wikipedia"]
        st.write(f"**[{wiki_info['title']}]({wiki_info['url']})**")
        st.markdown(wiki_info['summary'])

elif feature == "Legal Cost Estimator":
    st.subheader("Legal Cost Estimator")
    
    case_type = st.selectbox("Select case type", ["Civil Litigation", "Criminal Defense", "Family Law", "Corporate Law"], key="cost_estimator_case_type")
    complexity = st.selectbox("Select case complexity", ["Simple", "Moderate", "Complex"], key="cost_estimator_complexity")
    country = st.selectbox("Select country", ["USA", "UK", "Canada"], key="cost_estimator_country")
    
    if country == "USA":
        state = st.selectbox("Select state", ["California", "New York", "Texas", "Florida"], key="cost_estimator_state")
    else:
        state = None
    
    # Initialize cost_estimate
    cost_estimate = None
    
    if st.button("Estimate Costs"):
        with st.spinner("Estimating costs and performing web search..."):
            cost_estimate = estimate_legal_costs(case_type, complexity, country, state)
    
    # Check if cost_estimate is available before displaying results
    if cost_estimate:
        st.write("### Estimated Legal Costs")
        for key, value in cost_estimate["cost_breakdown"].items():
            st.write(f"**{key}:** {value}")
        
        st.write("### Web Search Results")
        if cost_estimate["web_search_results"]:
            for result in cost_estimate["web_search_results"]:
                st.write(f"**[{result['title']}]({result['link']})**")
                st.write(result["snippet"])
                st.write("---")
        else:
            st.write("No specific cost estimates found from web search.")
        
        st.write("### Potential High-Cost Areas")
        for area in cost_estimate["high_cost_areas"]:
            st.write(f"- {area}")
        
        st.write("### Cost-Saving Tips")
        for tip in cost_estimate["cost_saving_tips"]:
            st.write(f"- {tip}")
        
        st.write("### Tips for Finding the Best Legal Representation")
        for tip in cost_estimate["finding_best_lawyer_tips"]:
            st.write(f"- {tip}")
        
        st.write("### Recommended Lawyers/Law Firms")
        for lawyer in cost_estimate["lawyer_recommendations"][:5]:  # Display top 5 recommendations
            st.write(f"**[{lawyer['title']}]({lawyer['link']})**")
            st.write(lawyer["snippet"])
            st.write("---")
    else:
        st.write("Click 'Estimate Costs' to see the results.")

elif feature == "Legal Form Generator":
    st.subheader("Legal Form Generator")
    
    form_type = st.selectbox("Select form type", ["Power of Attorney", "Non-Disclosure Agreement", "Simple Will", "Lease Agreement", "Employment Contract"], key="form_generator_type")
    
    nation = st.selectbox("Select nation", ["USA", "UK"], key="form_generator_nation")
    if nation == "USA":
        state = st.selectbox("Select state", ["California", "New York", "Texas", "Florida"], key="form_generator_state")
    else:
        state = None
    
    user_details = {}
    if form_type == "Power of Attorney":
        user_details["principal_name"] = st.text_input("Principal's Full Name:")
        user_details["agent_name"] = st.text_input("Agent's Full Name:")
        user_details["powers"] = st.multiselect("Select powers to grant", ["Financial Decisions", "Healthcare Decisions", "Real Estate Transactions"])
    elif form_type == "Non-Disclosure Agreement":
        user_details["party_a"] = st.text_input("First Party's Name:")
        user_details["party_b"] = st.text_input("Second Party's Name:")
        user_details["purpose"] = st.text_input("Purpose of Disclosure:")
        user_details["duration"] = st.number_input("Duration of Agreement (in years):", min_value=1, max_value=10)
    elif form_type == "Simple Will":
        user_details["testator_name"] = st.text_input("Testator's Full Name:")
        user_details["beneficiaries"] = st.text_area("List Beneficiaries (one per line):")
        user_details["executor_name"] = st.text_input("Executor's Full Name:")
    elif form_type == "Lease Agreement":
        user_details["landlord_name"] = st.text_input("Landlord's Full Name:")
        user_details["tenant_name"] = st.text_input("Tenant's Full Name:")
        user_details["property_address"] = st.text_input("Property Address:")
        user_details["lease_term"] = st.number_input("Lease Term (in months):", min_value=1, max_value=60)
        user_details["start_date"] = st.date_input("Lease Start Date:")
        user_details["end_date"] = st.date_input("Lease End Date:")
        user_details["rent_amount"] = st.number_input("Monthly Rent Amount:", min_value=0)
        user_details["rent_due_day"] = st.number_input("Rent Due Day of Month:", min_value=1, max_value=31)
        user_details["security_deposit"] = st.number_input("Security Deposit Amount:", min_value=0)
    elif form_type == "Employment Contract":
        user_details["employer_name"] = st.text_input("Employer's Full Name:")
        user_details["employee_name"] = st.text_input("Employee's Full Name:")
        user_details["job_title"] = st.text_input("Job Title:")
        user_details["job_duties"] = st.text_area("Job Duties:")
        user_details["pay_frequency"] = st.selectbox("Pay Frequency:", ["Weekly", "Bi-weekly", "Monthly"])
        user_details["salary_amount"] = st.number_input("Salary Amount:", min_value=0)
        user_details["start_date"] = st.date_input("Employment Start Date:")
        user_details["benefits"] = st.text_area("Employee Benefits:")
    
    if st.button("Generate Form"):
        generated_form = generate_legal_form(form_type, user_details, nation, state)
        
        if "error" in generated_form:
            st.error(generated_form["error"])
        else:
            st.write("### Generated Legal Form:")
            st.text(generated_form["form_content"])
            
            # Provide download buttons for .txt and .docx files
            txt_download = generated_form["txt_file"].getvalue()
            docx_download = generated_form["docx_file"].getvalue()
            
            st.download_button(
                label="Download as .txt",
                data=txt_download,
                file_name=f"{form_type.lower().replace(' ', '_')}_{nation}{'_' + state if state else ''}.txt",
                mime="text/plain"
            )
            
            st.download_button(
                label="Download as .docx",
                data=docx_download,
                file_name=f"{form_type.lower().replace(' ', '_')}_{nation}{'_' + state if state else ''}.docx",
                mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document"
            )
            
            st.warning("Please note: This generated form is a template based on general principles of the selected jurisdiction. It should be reviewed by a legal professional licensed in the relevant jurisdiction before use.")

elif feature == "Case Trend Visualizer":
    st.subheader("Case Trend Visualizer")
    
    case_type = st.selectbox("Select case type to visualize", CASE_TYPES)
    
    if st.button("Visualize Trend") or 'df' in st.session_state:
        with st.spinner("Fetching and visualizing data..."):
            if 'df' not in st.session_state:
                fig, df = visualize_case_trends(case_type)
                st.session_state.df = df
                st.session_state.fig = fig
            else:
                df = st.session_state.df
                fig = st.session_state.fig
        
        st.plotly_chart(fig, use_container_width=True)
        
        # Display statistics
        st.subheader("Case Statistics")
        total_cases = df['Number of Cases'].sum()
        avg_cases = df['Number of Cases'].mean()
        max_year = df.loc[df['Number of Cases'].idxmax(), 'Year']
        min_year = df.loc[df['Number of Cases'].idxmin(), 'Year']
        
        col1, col2, col3 = st.columns(3)
        col1.metric("Total Cases", f"{total_cases:,}")
        col2.metric("Average Cases per Year", f"{avg_cases:,.0f}")
        col3.metric("Years", f"{min_year} - {max_year}")
        
        # Raw Data
        st.subheader("Raw Data")
        st.dataframe(df)
        
        # Download options
        csv = df.to_csv(index=False)
        st.download_button(
            label="Download data as CSV",
            data=csv,
            file_name=f"{case_type.lower().replace(' ', '_')}_trend_data.csv",
            mime="text/csv",
        )
        
        # Additional resources
        st.subheader("Additional Resources")
        st.markdown(f"[Data Source]({DATA_SOURCES[case_type]})")
        st.markdown("[US Courts Statistics](https://www.uscourts.gov/statistics-reports)")
        st.markdown("[Federal Judicial Caseload Statistics](https://www.uscourts.gov/statistics-reports/analysis-reports/federal-judicial-caseload-statistics)")
        st.markdown(f"[Legal Information Institute](https://www.law.cornell.edu/wex/{case_type.lower().replace(' ', '_')})")
        
        # Explanatory text
        st.subheader("Understanding the Trend")
        explanation = f"""

        The graph above shows the trend of {case_type} cases over time. Here are some key points to consider:

        

        1. Overall Trend: Observe whether the number of cases is generally increasing, decreasing, or remaining stable over the years.

        2. Peak Years: The year {max_year} saw the highest number of cases ({df['Number of Cases'].max():,}). This could be due to various factors such as changes in legislation, economic conditions, or social trends.

        3. Low Points: The year {min_year} had the lowest number of cases ({df['Number of Cases'].min():,}). Consider what might have contributed to this decrease.

        4. Recent Trends: Pay attention to the most recent years to understand current patterns in {case_type} cases.

        5. Contextual Factors: Remember that these numbers can be influenced by various factors, including changes in law, court procedures, societal changes, and more.

        

        For a deeper understanding of these trends and their implications, consider consulting with legal professionals or reviewing academic research in this area.

        """
        st.markdown(explanation)
        
        # Interactive elements
        st.subheader("Interactive Analysis")
        analysis_type = st.radio("Select analysis type:", ["Year-over-Year Change", "Moving Average"])
        
        if analysis_type == "Year-over-Year Change":
            df['YoY Change'] = df['Number of Cases'].pct_change() * 100
            yoy_fig = px.bar(df, x='Year', y='YoY Change', title="Year-over-Year Change in Case Numbers")
            st.plotly_chart(yoy_fig, use_container_width=True)
        
        elif analysis_type == "Moving Average":
            window = st.slider("Select moving average window:", 2, 5, 3)
            df['Moving Average'] = df['Number of Cases'].rolling(window=window).mean()
            ma_fig = px.line(df, x='Year', y=['Number of Cases', 'Moving Average'], title=f"{window}-Year Moving Average")
            st.plotly_chart(ma_fig, use_container_width=True)

# Add a footer with a disclaimer
# Footer
st.markdown("---")
st.markdown(
    """

    <div style="text-align: center;">

        <p>© 2023 Lex AI. All rights reserved.</p>

        <p><small>Disclaimer: This tool provides general legal information and assistance. It is not a substitute for professional legal advice. Please consult with a qualified attorney for specific legal matters.</small></p>

    </div>

    """,
    unsafe_allow_html=True
)

if __name__ == "__main__":
    st.sidebar.info("Select a feature from the dropdown above to get started.")