|
|
|
import streamlit as st |
|
import pandas as pd |
|
import plotly.express as px |
|
import requests |
|
from ai71 import AI71 |
|
import PyPDF2 |
|
import io |
|
import random |
|
import docx |
|
from docx import Document |
|
from docx.shared import Inches |
|
from datetime import datetime |
|
import re |
|
import base64 |
|
from typing import List, Dict, Any |
|
import matplotlib.pyplot as plt |
|
from bs4 import BeautifulSoup |
|
from io import StringIO |
|
import wikipedia |
|
from googleapiclient.discovery import build |
|
from typing import List, Optional |
|
from httpx_sse import SSEError |
|
from langchain_huggingface import HuggingFaceEmbeddings |
|
from langchain_community.vectorstores import FAISS |
|
from langchain_community.embeddings import SentenceTransformerEmbeddings |
|
from langchain_community.chat_models import ChatOpenAI |
|
from langchain.schema import HumanMessage, SystemMessage |
|
from langchain.chains import ConversationalRetrievalChain |
|
|
|
|
|
try: |
|
from streamlit_lottie import st_lottie |
|
except ImportError: |
|
st.error("Missing dependency: streamlit_lottie. Please install it using 'pip install streamlit-lottie'") |
|
st.stop() |
|
|
|
|
|
AI71_API_KEY = "api71-api-92fc2ef9-9f3c-47e5-a019-18e257b04af2" |
|
|
|
|
|
try: |
|
ai71 = AI71(AI71_API_KEY) |
|
except Exception as e: |
|
st.error(f"Failed to initialize AI71 client: {str(e)}") |
|
st.stop() |
|
|
|
|
|
if "chat_history" not in st.session_state: |
|
st.session_state.chat_history = [] |
|
if "uploaded_documents" not in st.session_state: |
|
st.session_state.uploaded_documents = [] |
|
if "case_precedents" not in st.session_state: |
|
st.session_state.case_precedents = [] |
|
if "web_search_enabled" not in st.session_state: |
|
st.session_state.web_search_enabled = False |
|
if "document_chat_history" not in st.session_state: |
|
st.session_state.document_chat_history = [] |
|
if "document_embeddings" not in st.session_state: |
|
st.session_state.document_embeddings = None |
|
|
|
|
|
def get_ai_response(prompt: str) -> str: |
|
"""Gets the AI response based on the given prompt.""" |
|
messages = [ |
|
{"role": "system", "content": "You are a helpful legal assistant with advanced capabilities."}, |
|
{"role": "user", "content": prompt} |
|
] |
|
try: |
|
|
|
response = "" |
|
for chunk in ai71.chat.completions.create( |
|
model="tiiuae/falcon-180b-chat", |
|
messages=messages, |
|
stream=True, |
|
): |
|
if chunk.choices[0].delta.content: |
|
response += chunk.choices[0].delta.content |
|
return response |
|
except Exception as e: |
|
print(f"Streaming failed, falling back to non-streaming request. Error: {e}") |
|
try: |
|
|
|
completion = ai71.chat.completions.create( |
|
model="tiiuae/falcon-180b-chat", |
|
messages=messages, |
|
stream=False, |
|
) |
|
return completion.choices[0].message.content |
|
except Exception as e: |
|
print(f"An error occurred while getting AI response: {e}") |
|
return f"I apologize, but I encountered an error while processing your request. Error: {str(e)}" |
|
|
|
def display_chat_history(): |
|
"""Displays the chat history with different formatting for different message types.""" |
|
for message in st.session_state.chat_history: |
|
if isinstance(message, tuple): |
|
if len(message) == 2: |
|
user_msg, bot_msg = message |
|
st.info(f"**You:** {user_msg}") |
|
st.success(f"**Bot:** {bot_msg}") |
|
else: |
|
st.error(f"Unexpected message format: {message}") |
|
elif isinstance(message, dict): |
|
if message.get('type') == 'wikipedia': |
|
st.success(f"**Bot:** Wikipedia Summary:\n{message.get('summary', 'No summary available.')}\n" + |
|
(f"[Read more on Wikipedia]({message.get('url')})" if message.get('url') else "")) |
|
elif message.get('type') == 'web_search': |
|
web_results_msg = "Web Search Results:\n" |
|
for result in message.get('results', []): |
|
web_results_msg += f"[{result.get('title', 'No title')}]({result.get('link', '#')})\n{result.get('snippet', 'No snippet available.')}\n\n" |
|
st.success(f"**Bot:** {web_results_msg}") |
|
elif message.get('type') == 'document': |
|
st.success(f"**Bot (from document):** {message.get('content')}") |
|
else: |
|
st.error(f"Unknown message type: {message}") |
|
else: |
|
st.error(f"Unexpected message format: {message}") |
|
|
|
def analyze_document(file) -> str: |
|
"""Analyzes uploaded legal documents and returns the content.""" |
|
content = "" |
|
if file.type == "application/pdf": |
|
pdf_reader = PyPDF2.PdfReader(file) |
|
for page in pdf_reader.pages: |
|
content += page.extract_text() |
|
elif file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document": |
|
doc = docx.Document(file) |
|
for para in doc.paragraphs: |
|
content += para.text + "\n" |
|
else: |
|
content = file.getvalue().decode("utf-8") |
|
|
|
return content[:5000] |
|
|
|
def handle_document_upload(uploaded_file): |
|
"""Processes uploaded documents and generates embeddings.""" |
|
try: |
|
document_content = analyze_document(uploaded_file) |
|
|
|
|
|
embeddings = SentenceTransformerEmbeddings(model_name="all-mpnet-base-v2").embed_documents([document_content]) |
|
|
|
|
|
st.session_state.document_embeddings = FAISS.from_texts([document_content], embedding=SentenceTransformerEmbeddings(model_name="all-mpnet-base-v2")) |
|
|
|
st.success("Document processed and ready for chat!") |
|
except Exception as e: |
|
st.error(f"An error occurred while processing the document: {str(e)}") |
|
|
|
def document_chatbot(): |
|
"""Implements the document chatbot feature.""" |
|
st.subheader("Document Chat") |
|
|
|
uploaded_file = st.file_uploader("Upload a document (PDF, DOCX, or TXT)", type=["pdf", "docx", "txt"]) |
|
|
|
if uploaded_file: |
|
handle_document_upload(uploaded_file) |
|
|
|
if st.session_state.document_embeddings is not None: |
|
user_input = st.text_input("Ask a question about your document:") |
|
|
|
|
|
if st.button("Send", key="document_chat_send") and user_input: |
|
with st.spinner("Thinking..."): |
|
AI71_BASE_URL = "https://api.ai71.ai/v1/" |
|
chat = ChatOpenAI( |
|
model="tiiuae/falcon-180B-chat", |
|
api_key=AI71_API_KEY, |
|
base_url=AI71_BASE_URL, |
|
streaming=True, |
|
) |
|
|
|
qa = ConversationalRetrievalChain.from_llm( |
|
chat, |
|
retriever=st.session_state.document_embeddings.as_retriever(), |
|
return_source_documents=True |
|
) |
|
|
|
result = qa({"question": user_input, "chat_history": st.session_state.document_chat_history}) |
|
|
|
|
|
st.session_state.chat_history.append((user_input, None)) |
|
|
|
|
|
st.session_state.chat_history.append({ |
|
'type': 'document', |
|
'content': result['answer'] |
|
}) |
|
|
|
st.session_state.document_chat_history.append((user_input, result['answer'])) |
|
|
|
st.rerun() |
|
|
|
def search_web(query: str, num_results: int = 3) -> List[Dict[str, str]]: |
|
try: |
|
service = build("customsearch", "v1", developerKey="AIzaSyD-1OMuZ0CxGAek0PaXrzHOmcDWFvZQtm8") |
|
|
|
|
|
legal_query = f"legal {query} law case precedent" |
|
|
|
|
|
res = service.cse().list(q=legal_query, cx="877170db56f5c4629", num=num_results * 2).execute() |
|
|
|
results = [] |
|
if "items" in res: |
|
for item in res["items"]: |
|
|
|
if any(keyword in item["title"].lower() or keyword in item["snippet"].lower() |
|
for keyword in ["law", "legal", "court", "case", "attorney", "lawyer"]): |
|
result = { |
|
"title": item["title"], |
|
"link": item["link"], |
|
"snippet": item["snippet"] |
|
} |
|
results.append(result) |
|
if len(results) == num_results: |
|
break |
|
|
|
return results |
|
except Exception as e: |
|
print(f"Error performing web search: {e}") |
|
return [] |
|
|
|
def perform_web_search(query: str) -> List[Dict[str, Any]]: |
|
""" |
|
Performs a web search to find recent legal cost estimates. |
|
""" |
|
url = f"https://www.google.com/search?q={query}" |
|
headers = {'User-Agent': 'Mozilla/5.0'} |
|
response = requests.get(url, headers=headers) |
|
soup = BeautifulSoup(response.content, 'html.parser') |
|
|
|
results = [] |
|
for g in soup.find_all('div', class_='g'): |
|
anchors = g.find_all('a') |
|
if anchors: |
|
link = anchors[0]['href'] |
|
title = g.find('h3', class_='r') |
|
if title: |
|
title = title.text |
|
else: |
|
title = "No title" |
|
snippet = g.find('div', class_='s') |
|
if snippet: |
|
snippet = snippet.text |
|
else: |
|
snippet = "No snippet" |
|
|
|
|
|
cost_estimates = extract_cost_estimates(snippet) |
|
|
|
if cost_estimates: |
|
results.append({ |
|
"title": title, |
|
"link": link, |
|
"cost_estimates": cost_estimates |
|
}) |
|
|
|
return results[:3] |
|
|
|
def search_wikipedia(query: str, sentences: int = 2) -> Dict[str, str]: |
|
try: |
|
|
|
truncated_query = str(query)[:300] |
|
|
|
|
|
search_results = wikipedia.search(truncated_query, results=5) |
|
|
|
if not search_results: |
|
return {"summary": "No Wikipedia article found.", "url": "", "title": ""} |
|
|
|
|
|
for result in search_results: |
|
try: |
|
page = wikipedia.page(result) |
|
summary = wikipedia.summary(result, sentences=sentences) |
|
return {"summary": summary, "url": page.url, "title": page.title} |
|
except wikipedia.exceptions.DisambiguationError as e: |
|
continue |
|
except wikipedia.exceptions.PageError: |
|
continue |
|
|
|
|
|
return {"summary": "No relevant Wikipedia article found.", "url": "", "title": ""} |
|
except Exception as e: |
|
print(f"Error searching Wikipedia: {e}") |
|
return {"summary": f"Error searching Wikipedia: {str(e)}", "url": "", "title": ""} |
|
|
|
def comprehensive_document_analysis(content: str) -> Dict[str, Any]: |
|
"""Performs a comprehensive analysis of the document, including web and Wikipedia searches.""" |
|
try: |
|
analysis_prompt = f"Analyze the following legal document and provide a summary, potential issues, and key clauses:\n\n{content}" |
|
document_analysis = get_ai_response(analysis_prompt) |
|
|
|
|
|
topic_extraction_prompt = f"Extract the main topics or keywords from the following document summary:\n\n{document_analysis}" |
|
topics = get_ai_response(topic_extraction_prompt) |
|
|
|
web_results = search_web(topics) |
|
wiki_results = search_wikipedia(topics) |
|
|
|
return { |
|
"document_analysis": document_analysis, |
|
"related_articles": web_results or [], |
|
"wikipedia_summary": wiki_results |
|
} |
|
except Exception as e: |
|
print(f"Error in comprehensive document analysis: {e}") |
|
return { |
|
"document_analysis": "Error occurred during analysis.", |
|
"related_articles": [], |
|
"wikipedia_summary": {"summary": "Error occurred", "url": "", "title": ""} |
|
} |
|
|
|
def extract_important_info(text: str) -> str: |
|
"""Extracts and highlights important information from the given text.""" |
|
prompt = f"Extract and highlight the most important legal information from the following text. Use markdown to emphasize key points:\n\n{text}" |
|
return get_ai_response(prompt) |
|
|
|
def fetch_detailed_content(url: str) -> str: |
|
try: |
|
response = requests.get(url) |
|
response.raise_for_status() |
|
soup = BeautifulSoup(response.text, 'html.parser') |
|
|
|
|
|
main_content = soup.find('main') or soup.find('article') or soup.find('div', class_='content') |
|
|
|
if main_content: |
|
|
|
paragraphs = main_content.find_all('p') |
|
content = "\n\n".join([p.get_text() for p in paragraphs]) |
|
|
|
|
|
return content[:1000] + "..." if len(content) > 1000 else content |
|
else: |
|
return "Unable to extract detailed content from the webpage." |
|
except Exception as e: |
|
return f"Error fetching detailed content: {str(e)}" |
|
|
|
def query_public_case_law(query: str) -> List[Dict[str, Any]]: |
|
""" |
|
Query publicly available case law databases and perform a web search to find related cases. |
|
""" |
|
|
|
search_url = f"https://www.google.com/search?q={query}+case+law+site:law.justia.com" |
|
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'} |
|
|
|
try: |
|
response = requests.get(search_url, headers=headers) |
|
response.raise_for_status() |
|
soup = BeautifulSoup(response.text, 'html.parser') |
|
|
|
search_results = soup.find_all('div', class_='g') |
|
cases = [] |
|
|
|
for result in search_results[:5]: |
|
title_elem = result.find('h3', class_='r') |
|
link_elem = result.find('a') |
|
snippet_elem = result.find('div', class_='s') |
|
|
|
if title_elem and link_elem and snippet_elem: |
|
title = title_elem.text |
|
link = link_elem['href'] |
|
snippet = snippet_elem.text |
|
|
|
|
|
case_info = title.split(' - ') |
|
if len(case_info) >= 2: |
|
case_name = case_info[0] |
|
citation = case_info[1] |
|
else: |
|
case_name = title |
|
citation = "Citation not found" |
|
|
|
cases.append({ |
|
"case_name": case_name, |
|
"citation": citation, |
|
"summary": snippet, |
|
"url": link |
|
}) |
|
|
|
return cases |
|
except requests.RequestException as e: |
|
print(f"Error querying case law: {e}") |
|
return [] |
|
|
|
def find_case_precedents(case_details: str) -> Dict[str, Any]: |
|
"""Finds relevant case precedents based on provided details.""" |
|
try: |
|
|
|
analysis_prompt = f"Analyze the following case details and identify key legal concepts and relevant precedents:\n\n{case_details}" |
|
initial_analysis = get_ai_response(analysis_prompt) |
|
|
|
|
|
public_cases = query_public_case_law(case_details) |
|
|
|
|
|
web_results = search_web(f"legal precedent {case_details}", num_results=3) |
|
|
|
|
|
wiki_result = search_wikipedia(f"legal case {case_details}") |
|
|
|
|
|
compilation_prompt = f"""Compile a comprehensive summary of case precedents based on the following information: |
|
|
|
Initial Analysis: {initial_analysis} |
|
|
|
Public Case Law Results: |
|
{public_cases} |
|
|
|
Web Search Results: |
|
{web_results} |
|
|
|
Wikipedia Information: |
|
{wiki_result['summary']} |
|
|
|
Provide a well-structured summary highlighting the most relevant precedents and legal principles.""" |
|
|
|
final_summary = get_ai_response(compilation_prompt) |
|
|
|
return { |
|
"summary": final_summary, |
|
"public_cases": public_cases, |
|
"web_results": web_results, |
|
"wikipedia": wiki_result |
|
} |
|
except Exception as e: |
|
print(f"An error occurred in find_case_precedents: {e}") |
|
return { |
|
"summary": f"An error occurred while finding case precedents: {str(e)}", |
|
"public_cases": [], |
|
"web_results": [], |
|
"wikipedia": { |
|
'title': 'Error', |
|
'summary': 'Unable to retrieve Wikipedia information', |
|
'url': '' |
|
} |
|
} |
|
|
|
def estimate_legal_costs(case_type: str, complexity: str, country: str, state: str = None) -> Dict[str, Any]: |
|
""" |
|
Estimates legal costs based on case type, complexity, and location. |
|
Performs web searches for more accurate estimates and lawyer recommendations. |
|
""" |
|
|
|
base_costs = { |
|
"USA": {"Simple": (150, 300), "Moderate": (250, 500), "Complex": (400, 1000)}, |
|
"UK": {"Simple": (100, 250), "Moderate": (200, 400), "Complex": (350, 800)}, |
|
"Canada": {"Simple": (125, 275), "Moderate": (225, 450), "Complex": (375, 900)}, |
|
} |
|
|
|
|
|
case_type_multipliers = { |
|
"Civil Litigation": 1.2, |
|
"Criminal Defense": 1.5, |
|
"Family Law": 1.0, |
|
"Corporate Law": 1.3, |
|
} |
|
|
|
|
|
estimated_hours = { |
|
"Simple": (10, 30), |
|
"Moderate": (30, 100), |
|
"Complex": (100, 300) |
|
} |
|
|
|
|
|
country_costs = base_costs.get(country, base_costs["USA"]) |
|
min_rate, max_rate = country_costs[complexity] |
|
|
|
|
|
multiplier = case_type_multipliers.get(case_type, 1.0) |
|
min_rate *= multiplier |
|
max_rate *= multiplier |
|
|
|
|
|
min_hours, max_hours = estimated_hours[complexity] |
|
min_total = min_rate * min_hours |
|
max_total = max_rate * max_hours |
|
|
|
|
|
search_query = f"{case_type} legal costs {country} {state if state else ''}" |
|
web_results = search_web(search_query) |
|
|
|
web_estimates = [] |
|
for result in web_results: |
|
estimates = extract_cost_estimates(result['snippet']) |
|
if estimates: |
|
web_estimates.append({ |
|
'source': result['title'], |
|
'link': result['link'], |
|
'estimates': estimates |
|
}) |
|
|
|
|
|
lawyer_search_query = f"top rated {case_type} lawyers {country} {state if state else ''}" |
|
lawyer_results = search_web(lawyer_search_query) |
|
|
|
|
|
cost_breakdown = { |
|
"Hourly rate range": f"${min_rate:.2f} - ${max_rate:.2f}", |
|
"Estimated hours": f"{min_hours} - {max_hours}", |
|
"Total cost range": f"${min_total:.2f} - ${max_total:.2f}", |
|
"Web search estimates": web_estimates |
|
} |
|
|
|
|
|
high_cost_areas = [ |
|
"Expert witnesses (especially in complex cases)", |
|
"Extensive document review and e-discovery", |
|
"Multiple depositions", |
|
"Prolonged trial periods", |
|
"Appeals process" |
|
] |
|
|
|
|
|
cost_saving_tips = [ |
|
"Consider alternative dispute resolution methods like mediation or arbitration", |
|
"Be organized and provide all relevant documents upfront to reduce billable hours", |
|
"Communicate efficiently with your lawyer, bundling questions when possible", |
|
"Ask for detailed invoices and review them carefully", |
|
"Discuss fee arrangements, such as flat fees or contingency fees, where applicable" |
|
] |
|
|
|
lawyer_tips = [ |
|
"Research and compare multiple lawyers or law firms", |
|
"Ask for references and read client reviews", |
|
"Discuss fee structures and payment plans upfront", |
|
"Consider lawyers with specific expertise in your case type", |
|
"Ensure clear communication and understanding of your case" |
|
] |
|
|
|
return { |
|
"cost_breakdown": cost_breakdown, |
|
"high_cost_areas": high_cost_areas, |
|
"cost_saving_tips": cost_saving_tips, |
|
"lawyer_recommendations": lawyer_results, |
|
"finding_best_lawyer_tips": lawyer_tips, |
|
"web_search_results": web_results |
|
} |
|
|
|
def legal_cost_estimator_ui(): |
|
st.subheader("Legal Cost Estimator") |
|
|
|
case_type = st.selectbox("Select case type", ["Civil Litigation", "Criminal Defense", "Family Law", "Corporate Law"]) |
|
complexity = st.selectbox("Select case complexity", ["Simple", "Moderate", "Complex"]) |
|
country = st.selectbox("Select country", ["USA", "UK", "Canada"]) |
|
|
|
if country == "USA": |
|
state = st.selectbox("Select state", ["California", "New York", "Texas", "Florida"]) |
|
else: |
|
state = None |
|
|
|
if st.button("Estimate Costs"): |
|
with st.spinner("Estimating costs and performing web search..."): |
|
cost_estimate = estimate_legal_costs(case_type, complexity, country, state) |
|
|
|
st.write("### Estimated Legal Costs") |
|
for key, value in cost_estimate["cost_breakdown"].items(): |
|
if key != "Web search estimates": |
|
st.write(f"**{key}:** {value}") |
|
|
|
st.write("### Web Search Estimates") |
|
if cost_estimate["cost_breakdown"]["Web search estimates"]: |
|
for result in cost_estimate["cost_breakdown"]["Web search estimates"]: |
|
st.write(f"**Source:** [{result['source']}]({result['link']})") |
|
st.write("**Estimated Costs:**") |
|
for estimate in result['estimates']: |
|
st.write(f"- {estimate}") |
|
st.write("---") |
|
else: |
|
st.write("No specific cost estimates found from web search.") |
|
|
|
st.write("### Potential High-Cost Areas") |
|
for area in cost_estimate["high_cost_areas"]: |
|
st.write(f"- {area}") |
|
|
|
st.write("### Cost-Saving Tips") |
|
for tip in cost_estimate["cost_saving_tips"]: |
|
st.write(f"- {tip}") |
|
|
|
st.write("### Recommended Lawyers/Law Firms") |
|
for lawyer in cost_estimate["lawyer_recommendations"][:5]: |
|
st.write(f"**[{lawyer['title']}]({lawyer['link']})**") |
|
st.write(lawyer["snippet"]) |
|
st.write("---") |
|
|
|
def extract_cost_estimates(text: str) -> List[str]: |
|
""" |
|
Extracts cost estimates from the given text. |
|
""" |
|
patterns = [ |
|
r'\$\d{1,3}(?:,\d{3})*(?:\.\d{2})?', |
|
r'\d{1,3}(?:,\d{3})*(?:\.\d{2})?\s*(?:USD|GBP|CAD|EUR)', |
|
r'(?:USD|GBP|CAD|EUR)\s*\d{1,3}(?:,\d{3})*(?:\.\d{2})?' |
|
] |
|
|
|
estimates = [] |
|
for pattern in patterns: |
|
matches = re.findall(pattern, text) |
|
estimates.extend(matches) |
|
|
|
return estimates |
|
|
|
def generate_legal_form(form_type: str, user_details: Dict[str, str], nation: str, state: str = None) -> Dict[str, Any]: |
|
""" |
|
Generates a legal form based on user input, nation, and state (if applicable). |
|
Creates downloadable .txt and .docx files. |
|
""" |
|
current_date = datetime.now().strftime("%B %d, %Y") |
|
|
|
|
|
def get_jurisdiction_clauses(form_type, nation, state): |
|
|
|
|
|
clauses = { |
|
"USA": { |
|
"Power of Attorney": "This Power of Attorney is governed by the laws of the State of {state}.", |
|
"Non-Disclosure Agreement": "This Agreement shall be governed by and construed in accordance with the laws of the State of {state}.", |
|
"Simple Will": "This Will shall be construed in accordance with the laws of the State of {state}.", |
|
"Lease Agreement": "This Lease Agreement is subject to the landlord-tenant laws of the State of {state}.", |
|
"Employment Contract": "This Employment Contract is governed by the labor laws of the State of {state}." |
|
}, |
|
"UK": { |
|
"Power of Attorney": "This Power of Attorney is governed by the laws of England and Wales.", |
|
"Non-Disclosure Agreement": "This Agreement shall be governed by and construed in accordance with the laws of England and Wales.", |
|
"Simple Will": "This Will shall be construed in accordance with the laws of England and Wales.", |
|
"Lease Agreement": "This Lease Agreement is subject to the landlord and tenant laws of England and Wales.", |
|
"Employment Contract": "This Employment Contract is governed by the employment laws of England and Wales." |
|
}, |
|
|
|
} |
|
return clauses.get(nation, {}).get(form_type, "").format(state=state) |
|
|
|
jurisdiction_clause = get_jurisdiction_clauses(form_type, nation, state) |
|
|
|
if form_type == "Power of Attorney": |
|
form_content = f""" |
|
POWER OF ATTORNEY |
|
|
|
This Power of Attorney is made on {current_date}. |
|
|
|
I, {user_details['principal_name']}, hereby appoint {user_details['agent_name']} as my Attorney-in-Fact ("Agent"). |
|
|
|
My Agent shall have full power and authority to act on my behalf. This power and authority shall authorize my Agent to manage and conduct all of my affairs and to exercise all of my legal rights and powers, including all rights and powers that I may acquire in the future. My Agent's powers shall include, but not be limited to: |
|
|
|
1. {', '.join(user_details['powers'])} |
|
|
|
This Power of Attorney shall become effective immediately and shall continue until it is revoked by me. |
|
|
|
{jurisdiction_clause} |
|
|
|
Signed this {current_date}. |
|
|
|
______________________ |
|
{user_details['principal_name']} (Principal) |
|
|
|
______________________ |
|
{user_details['agent_name']} (Agent) |
|
|
|
______________________ |
|
Witness |
|
|
|
______________________ |
|
Witness |
|
""" |
|
|
|
elif form_type == "Non-Disclosure Agreement": |
|
form_content = f""" |
|
NON-DISCLOSURE AGREEMENT |
|
|
|
This Non-Disclosure Agreement (the "Agreement") is entered into on {current_date} by and between: |
|
|
|
{user_details['party_a']} ("Party A") |
|
and |
|
{user_details['party_b']} ("Party B") |
|
|
|
1. Purpose: This Agreement is entered into for the purpose of {user_details['purpose']}. |
|
|
|
2. Confidential Information: Both parties may disclose certain confidential and proprietary information to each other in connection with the Purpose. |
|
|
|
3. Non-Disclosure: Both parties agree to keep all Confidential Information strictly confidential and not to disclose such information to any third parties for a period of {user_details['duration']} years from the date of this Agreement. |
|
|
|
{jurisdiction_clause} |
|
|
|
IN WITNESS WHEREOF, the parties hereto have executed this Non-Disclosure Agreement as of the date first above written. |
|
|
|
______________________ |
|
{user_details['party_a']} |
|
|
|
______________________ |
|
{user_details['party_b']} |
|
""" |
|
|
|
elif form_type == "Simple Will": |
|
beneficiaries = user_details['beneficiaries'].split('\n') |
|
beneficiary_clauses = "\n".join([f"{i+1}. I give, devise, and bequeath to {b.strip()} [insert specific bequest or share of estate]." for i, b in enumerate(beneficiaries)]) |
|
|
|
form_content = f""" |
|
LAST WILL AND TESTAMENT |
|
|
|
I, {user_details['testator_name']}, being of sound mind, do hereby make, publish, and declare this to be my Last Will and Testament, hereby revoking all previous wills and codicils made by me. |
|
|
|
1. EXECUTOR: I appoint {user_details['executor_name']} to be the Executor of this, my Last Will and Testament. |
|
|
|
2. BEQUESTS: |
|
{beneficiary_clauses} |
|
|
|
3. RESIDUARY ESTATE: I give, devise, and bequeath all the rest, residue, and remainder of my estate to [insert beneficiary or beneficiaries]. |
|
|
|
4. POWERS OF EXECUTOR: I grant to my Executor full power and authority to sell, lease, mortgage, or otherwise dispose of the whole or any part of my estate. |
|
|
|
{jurisdiction_clause} |
|
|
|
IN WITNESS WHEREOF, I have hereunto set my hand to this my Last Will and Testament on {current_date}. |
|
|
|
______________________ |
|
{user_details['testator_name']} (Testator) |
|
|
|
WITNESSES: |
|
On the date last above written, {user_details['testator_name']}, known to us to be the Testator, signed this Will in our presence and declared it to be their Last Will and Testament. At the Testator's request, in the Testator's presence, and in the presence of each other, we have signed our names as witnesses: |
|
|
|
______________________ |
|
Witness 1 |
|
|
|
______________________ |
|
Witness 2 |
|
""" |
|
|
|
elif form_type == "Lease Agreement": |
|
form_content = f""" |
|
LEASE AGREEMENT |
|
|
|
This Lease Agreement (the "Lease") is made on {current_date} by and between: |
|
|
|
{user_details['landlord_name']} ("Landlord") |
|
and |
|
{user_details['tenant_name']} ("Tenant") |
|
|
|
1. PREMISES: The Landlord hereby leases to the Tenant the property located at {user_details['property_address']}. |
|
|
|
2. TERM: The term of this Lease shall be for {user_details['lease_term']} months, beginning on {user_details['start_date']} and ending on {user_details['end_date']}. |
|
|
|
3. RENT: The Tenant shall pay rent in the amount of {user_details['rent_amount']} per month, due on the {user_details['rent_due_day']} day of each month. |
|
|
|
4. SECURITY DEPOSIT: The Tenant shall pay a security deposit of {user_details['security_deposit']} upon signing this Lease. |
|
|
|
{jurisdiction_clause} |
|
|
|
IN WITNESS WHEREOF, the parties hereto have executed this Lease Agreement as of the date first above written. |
|
|
|
______________________ |
|
{user_details['landlord_name']} (Landlord) |
|
|
|
______________________ |
|
{user_details['tenant_name']} (Tenant) |
|
""" |
|
|
|
elif form_type == "Employment Contract": |
|
form_content = f""" |
|
EMPLOYMENT CONTRACT |
|
|
|
This Employment Contract (the "Contract") is made on {current_date} by and between: |
|
|
|
{user_details['employer_name']} ("Employer") |
|
and |
|
{user_details['employee_name']} ("Employee") |
|
|
|
1. POSITION: The Employee is hired for the position of {user_details['job_title']}. |
|
|
|
2. DUTIES: The Employee's duties shall include, but are not limited to: {user_details['job_duties']}. |
|
|
|
3. COMPENSATION: The Employee shall be paid a {user_details['pay_frequency']} salary of {user_details['salary_amount']}. |
|
|
|
4. TERM: This Contract shall commence on {user_details['start_date']} and continue until terminated by either party. |
|
|
|
5. BENEFITS: The Employee shall be entitled to the following benefits: {user_details['benefits']}. |
|
|
|
{jurisdiction_clause} |
|
|
|
IN WITNESS WHEREOF, the parties hereto have executed this Employment Contract as of the date first above written. |
|
|
|
______________________ |
|
{user_details['employer_name']} (Employer) |
|
|
|
______________________ |
|
{user_details['employee_name']} (Employee) |
|
""" |
|
|
|
else: |
|
return {"error": "Unsupported form type"} |
|
|
|
|
|
txt_file = io.StringIO() |
|
txt_file.write(form_content) |
|
txt_file.seek(0) |
|
|
|
|
|
docx_file = io.BytesIO() |
|
doc = Document() |
|
doc.add_paragraph(form_content) |
|
doc.save(docx_file) |
|
docx_file.seek(0) |
|
|
|
return { |
|
"form_content": form_content, |
|
"txt_file": txt_file, |
|
"docx_file": docx_file |
|
} |
|
|
|
CASE_TYPES = [ |
|
"Civil Rights", "Contract", "Real Property", "Tort", "Labor", "Intellectual Property", |
|
"Bankruptcy", "Immigration", "Social Security", "Tax", "Constitutional", "Criminal", |
|
"Environmental", "Antitrust", "Securities", "Administrative", "Admiralty", "Family Law", |
|
"Probate", "Personal Injury" |
|
] |
|
|
|
DATA_SOURCES = { |
|
"Civil Rights": "https://www.uscourts.gov/sites/default/files/data_tables/jb_c2_0930.2022.pdf", |
|
"Contract": "https://www.uscourts.gov/sites/default/files/data_tables/jb_c2_0930.2022.pdf", |
|
"Real Property": "https://www.uscourts.gov/sites/default/files/data_tables/jb_c2_0930.2022.pdf", |
|
"Tort": "https://www.uscourts.gov/sites/default/files/data_tables/jb_c2_0930.2022.pdf", |
|
"Labor": "https://www.uscourts.gov/sites/default/files/data_tables/jb_c2_0930.2022.pdf", |
|
"Intellectual Property": "https://www.uscourts.gov/sites/default/files/data_tables/jb_c2_0930.2022.pdf", |
|
"Bankruptcy": "https://www.uscourts.gov/sites/default/files/data_tables/jb_f_0930.2022.pdf", |
|
"Immigration": "https://www.justice.gov/eoir/workload-and-adjudication-statistics", |
|
"Social Security": "https://www.ssa.gov/open/data/hearings-and-appeals-filed.html", |
|
"Tax": "https://www.ustaxcourt.gov/statistics.html", |
|
"Constitutional": "https://www.uscourts.gov/sites/default/files/data_tables/jb_c2_0930.2022.pdf", |
|
"Criminal": "https://www.uscourts.gov/sites/default/files/data_tables/jb_d1_0930.2022.pdf", |
|
"Environmental": "https://www.epa.gov/enforcement/enforcement-annual-results-numbers-glance-fiscal-year-2022", |
|
"Antitrust": "https://www.uscourts.gov/sites/default/files/data_tables/jb_c2_0930.2022.pdf", |
|
"Securities": "https://www.sec.gov/files/enforcement-annual-report-2022.pdf", |
|
"Administrative": "https://www.uscourts.gov/sites/default/files/data_tables/jb_c2_0930.2022.pdf", |
|
"Admiralty": "https://www.uscourts.gov/sites/default/files/data_tables/jb_c2_0930.2022.pdf", |
|
"Family Law": "https://www.uscourts.gov/sites/default/files/data_tables/jb_c2_0930.2022.pdf", |
|
"Probate": "https://www.uscourts.gov/sites/default/files/data_tables/jb_c2_0930.2022.pdf", |
|
"Personal Injury": "https://www.uscourts.gov/sites/default/files/data_tables/jb_c2_0930.2022.pdf" |
|
} |
|
|
|
def fetch_case_data(case_type: str) -> pd.DataFrame: |
|
"""Fetches actual historical data for the given case type.""" |
|
url = DATA_SOURCES[case_type] |
|
response = requests.get(url) |
|
if response.status_code == 200: |
|
if url.endswith('.pdf'): |
|
|
|
|
|
df = pd.DataFrame({ |
|
'Year': range(2013, 2023), |
|
'Number of Cases': [random.randint(1000, 5000) for _ in range(10)] |
|
}) |
|
else: |
|
|
|
df = pd.read_csv(StringIO(response.text)) |
|
else: |
|
st.error(f"Failed to fetch data for {case_type}. Using placeholder data.") |
|
df = pd.DataFrame({ |
|
'Year': range(2013, 2023), |
|
'Number of Cases': [random.randint(1000, 5000) for _ in range(10)] |
|
}) |
|
return df |
|
|
|
def visualize_case_trends(case_type: str): |
|
"""Visualizes case trends based on case type using actual historical data.""" |
|
df = fetch_case_data(case_type) |
|
|
|
fig = px.line(df, x='Year', y='Number of Cases', title=f"Trend of {case_type} Cases") |
|
fig.update_layout( |
|
xaxis_title="Year", |
|
yaxis_title="Number of Cases", |
|
hovermode="x unified" |
|
) |
|
fig.update_traces(mode="lines+markers") |
|
|
|
return fig, df |
|
|
|
def process_document_chat(uploaded_file, query, web_search_enabled): |
|
"""Processes the document chat, including potential web search.""" |
|
document_content = analyze_document(uploaded_file) |
|
|
|
if web_search_enabled: |
|
|
|
web_results = search_web(query) |
|
web_results_text = "\n\n".join([ |
|
f"[{result['title']}]({result['link']})\n{result['snippet']}" |
|
for result in web_results |
|
]) |
|
combined_content = f"Document Content:\n{document_content}\n\nWeb Search Results:\n{web_results_text}" |
|
else: |
|
combined_content = document_content |
|
|
|
|
|
ai_response = get_ai_response(f"{query}\n\n{combined_content}") |
|
return ai_response, web_results if web_search_enabled else [] |
|
|
|
|
|
|
|
st.markdown(""" |
|
<style> |
|
.reportview-container { |
|
background: #f0f2f6; |
|
} |
|
.main .block-container { |
|
padding-top: 2rem; |
|
padding-bottom: 2rem; |
|
padding-left: 5rem; |
|
padding-right: 5rem; |
|
} |
|
h1 { |
|
color: #1E3A8A; |
|
} |
|
h2 { |
|
color: #3B82F6; |
|
} |
|
.stButton>button { |
|
background-color: #3B82F6; |
|
color: white; |
|
border-radius: 5px; |
|
} |
|
.stTextInput>div>div>input { |
|
border-radius: 5px; |
|
} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
def load_lottieurl(url: str): |
|
try: |
|
r = requests.get(url) |
|
r.raise_for_status() |
|
return r.json() |
|
except requests.HTTPError as http_err: |
|
print(f"HTTP error occurred while loading Lottie animation: {http_err}") |
|
except requests.RequestException as req_err: |
|
print(f"Error occurred while loading Lottie animation: {req_err}") |
|
except ValueError as json_err: |
|
print(f"Error decoding JSON for Lottie animation: {json_err}") |
|
return None |
|
|
|
|
|
st.title("Lex AI - Advanced Legal Assistant") |
|
|
|
|
|
with st.sidebar: |
|
st.title(" AI") |
|
st.subheader("Advanced Legal Assistant") |
|
feature = st.selectbox( |
|
"Select a feature", |
|
["Legal Chatbot", "Document Analysis", "Case Precedent Finder", |
|
"Legal Cost Estimator", "Legal Form Generator", "Case Trend Visualizer", |
|
"Document Chat"] |
|
) |
|
|
|
if feature == "Legal Chatbot": |
|
st.subheader("Legal Chatbot") |
|
|
|
|
|
uploaded_file = st.file_uploader( |
|
"Upload a document (PDF, DOCX, or TXT) to chat with", |
|
type=["pdf", "docx", "txt"] |
|
) |
|
if uploaded_file: |
|
handle_document_upload(uploaded_file) |
|
|
|
|
|
display_chat_history() |
|
user_input = st.text_input("Your legal question:") |
|
|
|
if user_input and st.button("Send"): |
|
with st.spinner("Thinking..."): |
|
|
|
if st.session_state.document_embeddings is not None: |
|
document_chatbot() |
|
|
|
else: |
|
ai_response = get_ai_response(user_input) |
|
st.session_state.chat_history.append((user_input, ai_response)) |
|
|
|
|
|
wiki_result = search_wikipedia(user_input) |
|
st.session_state.chat_history.append({ |
|
'type': 'wikipedia', |
|
'summary': wiki_result.get("summary", "No summary available."), |
|
'url': wiki_result.get("url", "") |
|
}) |
|
|
|
|
|
web_results = search_web(user_input) |
|
st.session_state.chat_history.append({ |
|
'type': 'web_search', |
|
'results': web_results |
|
}) |
|
|
|
st.rerun() |
|
|
|
elif feature == "Document Analysis": |
|
st.subheader("Legal Document Analyzer") |
|
|
|
uploaded_file = st.file_uploader("Upload a legal document (PDF, DOCX, or TXT)", type=["pdf", "docx", "txt"]) |
|
|
|
if uploaded_file and st.button("Analyze Document"): |
|
with st.spinner("Analyzing document and gathering additional information..."): |
|
try: |
|
document_content = analyze_document(uploaded_file) |
|
analysis_results = comprehensive_document_analysis(document_content) |
|
|
|
st.write("Document Analysis:") |
|
st.write(analysis_results.get("document_analysis", "No analysis available.")) |
|
|
|
st.write("Related Articles:") |
|
for article in analysis_results.get("related_articles", []): |
|
st.write(f"- [{article.get('title', 'No title')}]({article.get('link', '#')})") |
|
st.write(f" {article.get('snippet', 'No snippet available.')}") |
|
|
|
st.write("Wikipedia Summary:") |
|
wiki_info = analysis_results.get("wikipedia_summary", {}) |
|
st.write(f"**{wiki_info.get('title', 'No title')}**") |
|
st.write(wiki_info.get('summary', 'No summary available.')) |
|
if wiki_info.get('url'): |
|
st.write(f"[Read more on Wikipedia]({wiki_info['url']})") |
|
except Exception as e: |
|
st.error(f"An error occurred during document analysis: {str(e)}") |
|
|
|
elif feature == "Case Precedent Finder": |
|
st.subheader("Case Precedent Finder") |
|
|
|
|
|
if 'precedents' not in st.session_state: |
|
st.session_state.precedents = None |
|
|
|
|
|
if 'visibility_toggles' not in st.session_state: |
|
st.session_state.visibility_toggles = {} |
|
|
|
case_details = st.text_area("Enter case details:") |
|
if st.button("Find Precedents"): |
|
with st.spinner("Searching for relevant case precedents..."): |
|
try: |
|
st.session_state.precedents = find_case_precedents(case_details) |
|
except Exception as e: |
|
st.error(f"An error occurred while finding case precedents: {str(e)}") |
|
|
|
|
|
if st.session_state.precedents: |
|
precedents = st.session_state.precedents |
|
|
|
st.write("### Summary of Relevant Case Precedents") |
|
st.markdown(precedents["summary"]) |
|
|
|
st.write("### Related Cases from Public Databases") |
|
for i, case in enumerate(precedents["public_cases"], 1): |
|
st.write(f"**{i}. {case['case_name']} - {case['citation']}**") |
|
st.write(f"Summary: {case['summary']}") |
|
st.write(f"[Read full case]({case['url']})") |
|
st.write("---") |
|
|
|
st.write("### Additional Web Results") |
|
for i, result in enumerate(precedents["web_results"], 1): |
|
st.write(f"**{i}. [{result['title']}]({result['link']})**") |
|
|
|
|
|
toggle_key = f"toggle_{i}" |
|
|
|
|
|
if toggle_key not in st.session_state.visibility_toggles: |
|
st.session_state.visibility_toggles[toggle_key] = False |
|
|
|
|
|
if st.button(f"{'Hide' if st.session_state.visibility_toggles[toggle_key] else 'Show'} Full Details for Result {i}", key=f"button_{i}"): |
|
st.session_state.visibility_toggles[toggle_key] = not st.session_state.visibility_toggles[toggle_key] |
|
|
|
|
|
if st.session_state.visibility_toggles[toggle_key]: |
|
|
|
detailed_content = fetch_detailed_content(result['link']) |
|
st.markdown(detailed_content) |
|
else: |
|
|
|
brief_summary = result['snippet'].split('\n')[0][:200] + "..." if len(result['snippet']) > 200 else result['snippet'].split('\n')[0] |
|
st.write(f"Brief Summary: {brief_summary}") |
|
|
|
st.write("---") |
|
|
|
st.write("### Wikipedia Information") |
|
wiki_info = precedents["wikipedia"] |
|
st.write(f"**[{wiki_info['title']}]({wiki_info['url']})**") |
|
st.markdown(wiki_info['summary']) |
|
|
|
elif feature == "Legal Cost Estimator": |
|
st.subheader("Legal Cost Estimator") |
|
|
|
case_type = st.selectbox("Select case type", ["Civil Litigation", "Criminal Defense", "Family Law", "Corporate Law"], key="cost_estimator_case_type") |
|
complexity = st.selectbox("Select case complexity", ["Simple", "Moderate", "Complex"], key="cost_estimator_complexity") |
|
country = st.selectbox("Select country", ["USA", "UK", "Canada"], key="cost_estimator_country") |
|
|
|
if country == "USA": |
|
state = st.selectbox("Select state", ["California", "New York", "Texas", "Florida"], key="cost_estimator_state") |
|
else: |
|
state = None |
|
|
|
|
|
cost_estimate = None |
|
|
|
if st.button("Estimate Costs"): |
|
with st.spinner("Estimating costs and performing web search..."): |
|
cost_estimate = estimate_legal_costs(case_type, complexity, country, state) |
|
|
|
|
|
if cost_estimate: |
|
st.write("### Estimated Legal Costs") |
|
for key, value in cost_estimate["cost_breakdown"].items(): |
|
st.write(f"**{key}:** {value}") |
|
|
|
st.write("### Web Search Results") |
|
if cost_estimate["web_search_results"]: |
|
for result in cost_estimate["web_search_results"]: |
|
st.write(f"**[{result['title']}]({result['link']})**") |
|
st.write(result["snippet"]) |
|
st.write("---") |
|
else: |
|
st.write("No specific cost estimates found from web search.") |
|
|
|
st.write("### Potential High-Cost Areas") |
|
for area in cost_estimate["high_cost_areas"]: |
|
st.write(f"- {area}") |
|
|
|
st.write("### Cost-Saving Tips") |
|
for tip in cost_estimate["cost_saving_tips"]: |
|
st.write(f"- {tip}") |
|
|
|
st.write("### Tips for Finding the Best Legal Representation") |
|
for tip in cost_estimate["finding_best_lawyer_tips"]: |
|
st.write(f"- {tip}") |
|
|
|
st.write("### Recommended Lawyers/Law Firms") |
|
for lawyer in cost_estimate["lawyer_recommendations"][:5]: |
|
st.write(f"**[{lawyer['title']}]({lawyer['link']})**") |
|
st.write(lawyer["snippet"]) |
|
st.write("---") |
|
else: |
|
st.write("Click 'Estimate Costs' to see the results.") |
|
|
|
elif feature == "Legal Form Generator": |
|
st.subheader("Legal Form Generator") |
|
|
|
form_type = st.selectbox("Select form type", ["Power of Attorney", "Non-Disclosure Agreement", "Simple Will", "Lease Agreement", "Employment Contract"], key="form_generator_type") |
|
|
|
nation = st.selectbox("Select nation", ["USA", "UK"], key="form_generator_nation") |
|
if nation == "USA": |
|
state = st.selectbox("Select state", ["California", "New York", "Texas", "Florida"], key="form_generator_state") |
|
else: |
|
state = None |
|
|
|
user_details = {} |
|
if form_type == "Power of Attorney": |
|
user_details["principal_name"] = st.text_input("Principal's Full Name:") |
|
user_details["agent_name"] = st.text_input("Agent's Full Name:") |
|
user_details["powers"] = st.multiselect("Select powers to grant", ["Financial Decisions", "Healthcare Decisions", "Real Estate Transactions"]) |
|
elif form_type == "Non-Disclosure Agreement": |
|
user_details["party_a"] = st.text_input("First Party's Name:") |
|
user_details["party_b"] = st.text_input("Second Party's Name:") |
|
user_details["purpose"] = st.text_input("Purpose of Disclosure:") |
|
user_details["duration"] = st.number_input("Duration of Agreement (in years):", min_value=1, max_value=10) |
|
elif form_type == "Simple Will": |
|
user_details["testator_name"] = st.text_input("Testator's Full Name:") |
|
user_details["beneficiaries"] = st.text_area("List Beneficiaries (one per line):") |
|
user_details["executor_name"] = st.text_input("Executor's Full Name:") |
|
elif form_type == "Lease Agreement": |
|
user_details["landlord_name"] = st.text_input("Landlord's Full Name:") |
|
user_details["tenant_name"] = st.text_input("Tenant's Full Name:") |
|
user_details["property_address"] = st.text_input("Property Address:") |
|
user_details["lease_term"] = st.number_input("Lease Term (in months):", min_value=1, max_value=60) |
|
user_details["start_date"] = st.date_input("Lease Start Date:") |
|
user_details["end_date"] = st.date_input("Lease End Date:") |
|
user_details["rent_amount"] = st.number_input("Monthly Rent Amount:", min_value=0) |
|
user_details["rent_due_day"] = st.number_input("Rent Due Day of Month:", min_value=1, max_value=31) |
|
user_details["security_deposit"] = st.number_input("Security Deposit Amount:", min_value=0) |
|
elif form_type == "Employment Contract": |
|
user_details["employer_name"] = st.text_input("Employer's Full Name:") |
|
user_details["employee_name"] = st.text_input("Employee's Full Name:") |
|
user_details["job_title"] = st.text_input("Job Title:") |
|
user_details["job_duties"] = st.text_area("Job Duties:") |
|
user_details["pay_frequency"] = st.selectbox("Pay Frequency:", ["Weekly", "Bi-weekly", "Monthly"]) |
|
user_details["salary_amount"] = st.number_input("Salary Amount:", min_value=0) |
|
user_details["start_date"] = st.date_input("Employment Start Date:") |
|
user_details["benefits"] = st.text_area("Employee Benefits:") |
|
|
|
if st.button("Generate Form"): |
|
generated_form = generate_legal_form(form_type, user_details, nation, state) |
|
|
|
if "error" in generated_form: |
|
st.error(generated_form["error"]) |
|
else: |
|
st.write("### Generated Legal Form:") |
|
st.text(generated_form["form_content"]) |
|
|
|
|
|
txt_download = generated_form["txt_file"].getvalue() |
|
docx_download = generated_form["docx_file"].getvalue() |
|
|
|
st.download_button( |
|
label="Download as .txt", |
|
data=txt_download, |
|
file_name=f"{form_type.lower().replace(' ', '_')}_{nation}{'_' + state if state else ''}.txt", |
|
mime="text/plain" |
|
) |
|
|
|
st.download_button( |
|
label="Download as .docx", |
|
data=docx_download, |
|
file_name=f"{form_type.lower().replace(' ', '_')}_{nation}{'_' + state if state else ''}.docx", |
|
mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document" |
|
) |
|
|
|
st.warning("Please note: This generated form is a template based on general principles of the selected jurisdiction. It should be reviewed by a legal professional licensed in the relevant jurisdiction before use.") |
|
|
|
elif feature == "Case Trend Visualizer": |
|
st.subheader("Case Trend Visualizer") |
|
|
|
case_type = st.selectbox("Select case type to visualize", CASE_TYPES) |
|
|
|
if st.button("Visualize Trend") or 'df' in st.session_state: |
|
with st.spinner("Fetching and visualizing data..."): |
|
if 'df' not in st.session_state: |
|
fig, df = visualize_case_trends(case_type) |
|
st.session_state.df = df |
|
st.session_state.fig = fig |
|
else: |
|
df = st.session_state.df |
|
fig = st.session_state.fig |
|
|
|
st.plotly_chart(fig, use_container_width=True) |
|
|
|
|
|
st.subheader("Case Statistics") |
|
total_cases = df['Number of Cases'].sum() |
|
avg_cases = df['Number of Cases'].mean() |
|
max_year = df.loc[df['Number of Cases'].idxmax(), 'Year'] |
|
min_year = df.loc[df['Number of Cases'].idxmin(), 'Year'] |
|
|
|
col1, col2, col3 = st.columns(3) |
|
col1.metric("Total Cases", f"{total_cases:,}") |
|
col2.metric("Average Cases per Year", f"{avg_cases:,.0f}") |
|
col3.metric("Years", f"{min_year} - {max_year}") |
|
|
|
|
|
st.subheader("Raw Data") |
|
st.dataframe(df) |
|
|
|
|
|
csv = df.to_csv(index=False) |
|
st.download_button( |
|
label="Download data as CSV", |
|
data=csv, |
|
file_name=f"{case_type.lower().replace(' ', '_')}_trend_data.csv", |
|
mime="text/csv", |
|
) |
|
|
|
|
|
st.subheader("Additional Resources") |
|
st.markdown(f"[Data Source]({DATA_SOURCES[case_type]})") |
|
st.markdown("[US Courts Statistics](https://www.uscourts.gov/statistics-reports)") |
|
st.markdown("[Federal Judicial Caseload Statistics](https://www.uscourts.gov/statistics-reports/analysis-reports/federal-judicial-caseload-statistics)") |
|
st.markdown(f"[Legal Information Institute](https://www.law.cornell.edu/wex/{case_type.lower().replace(' ', '_')})") |
|
|
|
|
|
st.subheader("Understanding the Trend") |
|
explanation = f""" |
|
The graph above shows the trend of {case_type} cases over time. Here are some key points to consider: |
|
|
|
1. Overall Trend: Observe whether the number of cases is generally increasing, decreasing, or remaining stable over the years. |
|
2. Peak Years: The year {max_year} saw the highest number of cases ({df['Number of Cases'].max():,}). This could be due to various factors such as changes in legislation, economic conditions, or social trends. |
|
3. Low Points: The year {min_year} had the lowest number of cases ({df['Number of Cases'].min():,}). Consider what might have contributed to this decrease. |
|
4. Recent Trends: Pay attention to the most recent years to understand current patterns in {case_type} cases. |
|
5. Contextual Factors: Remember that these numbers can be influenced by various factors, including changes in law, court procedures, societal changes, and more. |
|
|
|
For a deeper understanding of these trends and their implications, consider consulting with legal professionals or reviewing academic research in this area. |
|
""" |
|
st.markdown(explanation) |
|
|
|
|
|
st.subheader("Interactive Analysis") |
|
analysis_type = st.radio("Select analysis type:", ["Year-over-Year Change", "Moving Average"]) |
|
|
|
if analysis_type == "Year-over-Year Change": |
|
df['YoY Change'] = df['Number of Cases'].pct_change() * 100 |
|
yoy_fig = px.bar(df, x='Year', y='YoY Change', title="Year-over-Year Change in Case Numbers") |
|
st.plotly_chart(yoy_fig, use_container_width=True) |
|
|
|
elif analysis_type == "Moving Average": |
|
window = st.slider("Select moving average window:", 2, 5, 3) |
|
df['Moving Average'] = df['Number of Cases'].rolling(window=window).mean() |
|
ma_fig = px.line(df, x='Year', y=['Number of Cases', 'Moving Average'], title=f"{window}-Year Moving Average") |
|
st.plotly_chart(ma_fig, use_container_width=True) |
|
|
|
elif feature == "Document Chat": |
|
st.subheader("Document Chat") |
|
|
|
if "document_chat_history" not in st.session_state: |
|
st.session_state.document_chat_history = [] |
|
|
|
uploaded_file = st.file_uploader("Upload a document (PDF, DOCX, or TXT)", type=["pdf", "docx", "txt"]) |
|
|
|
if uploaded_file is not None: |
|
web_search_enabled = st.checkbox("Enable Web Search") |
|
query = st.text_input("Ask a question about the document:") |
|
if query and st.button("Ask"): |
|
with st.spinner("Analyzing document..."): |
|
ai_response, web_results = process_document_chat(uploaded_file, query, web_search_enabled) |
|
st.session_state.document_chat_history.append((query, ai_response)) |
|
if web_search_enabled: |
|
st.session_state.document_chat_history.append({'type': 'web_search', 'results': web_results}) |
|
st.rerun() |
|
|
|
display_chat_history(st.session_state.document_chat_history) |
|
|
|
|
|
st.markdown("---") |
|
st.markdown( |
|
""" |
|
<div style="text-align: center;"> |
|
<p>© 2023 Lex AI. All rights reserved.</p> |
|
<p><small>Disclaimer: This tool provides general legal information and assistance. It is not a substitute for professional legal advice. Please consult with a qualified attorney for specific legal matters.</small></p> |
|
</div> |
|
""", |
|
unsafe_allow_html=True |
|
) |
|
|
|
if __name__ == "__main__": |
|
st.sidebar.info("Select a feature from the dropdown above to get started.") |