Spaces:
Sleeping
Sleeping
File size: 7,868 Bytes
5347681 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import streamlit as st
import os
from dotenv import load_dotenv
from langchain_community.chat_models import ChatOpenAI
from langchain_community.document_loaders import PyPDFLoader, TextLoader, UnstructuredMarkdownLoader, Docx2txtLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
import tempfile
from typing import List, Dict
import json
from datetime import datetime
# Load environment variables
load_dotenv()
AI71_BASE_URL = "https://api.ai71.ai/v1/"
AI71_API_KEY = os.getenv('AI71_API_KEY')
# Initialize the Falcon model
@st.cache_resource
def get_llm():
return ChatOpenAI(
model="tiiuae/falcon-180B-chat",
api_key=AI71_API_KEY,
base_url=AI71_BASE_URL,
streaming=True,
)
# Initialize embeddings
@st.cache_resource
def get_embeddings():
return HuggingFaceEmbeddings()
def process_document(file_content, file_type):
with tempfile.NamedTemporaryFile(delete=False, suffix=f'.{file_type}') as tmp_file:
if isinstance(file_content, str):
tmp_file.write(file_content.encode('utf-8'))
else:
tmp_file.write(file_content)
tmp_file_path = tmp_file.name
if file_type == 'pdf':
loader = PyPDFLoader(tmp_file_path)
elif file_type == 'txt':
loader = TextLoader(tmp_file_path)
elif file_type == 'md':
loader = UnstructuredMarkdownLoader(tmp_file_path)
elif file_type == 'docx':
loader = Docx2txtLoader(tmp_file_path)
else:
raise ValueError(f"Unsupported file type: {file_type}")
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
texts = text_splitter.split_documents(documents)
vectorstore = FAISS.from_documents(texts, get_embeddings())
retriever = vectorstore.as_retriever(search_kwargs={"k": 5})
os.unlink(tmp_file_path)
return retriever
def generate_notes(retriever, topic, style, length):
prompt_template = f"""
You are an expert note-taker and summarizer. Your task is to create {style} and {length} notes on the given topic.
Use the following guidelines:
1. Focus on key concepts and important details.
2. Use bullet points or numbered lists for clarity.
3. Include relevant examples or explanations where necessary.
4. Organize the information in a logical and easy-to-follow structure.
5. Aim for clarity without sacrificing important information.
Context: {{context}}
Topic: {{question}}
Notes:
"""
PROMPT = PromptTemplate(
template=prompt_template,
input_variables=["context", "question"]
)
chain_type_kwargs = {"prompt": PROMPT}
qa_chain = RetrievalQA.from_chain_type(
llm=get_llm(),
chain_type="stuff",
retriever=retriever,
chain_type_kwargs=chain_type_kwargs
)
result = qa_chain({"query": topic})
return result['result']
def save_notes(notes: str, topic: str):
notes_data = load_notes_data()
timestamp = datetime.now().isoformat()
notes_data.append({"topic": topic, "notes": notes, "timestamp": timestamp})
with open("saved_notes.json", "w") as f:
json.dump(notes_data, f)
def load_notes_data() -> List[Dict]:
try:
with open("saved_notes.json", "r") as f:
return json.load(f)
except FileNotFoundError:
return []
def main():
st.set_page_config(page_title="S.H.E.R.L.O.C.K. Notes Generator", layout="wide")
st.title("S.H.E.R.L.O.C.K. Notes Generator")
st.markdown("""
This tool helps you generate concise and relevant notes on specific topics.
You can upload a document or enter text directly.
""")
# Sidebar content
st.sidebar.title("About S.H.E.R.L.O.C.K.")
st.sidebar.markdown("""
S.H.E.R.L.O.C.K. (Summarizing Helper & Effective Research Liaison for Organizing Comprehensive Knowledge)
is an advanced AI-powered tool designed to assist you in generating comprehensive notes from various sources.
Key Features:
- Multi-format support (PDF, TXT, MD, DOCX)
- Customizable note generation
- Intelligent text processing
- Save and retrieve notes
How to use:
1. Choose your input method
2. Process your document or text
3. Enter a topic and customize note style
4. Generate and save your notes
Enjoy your enhanced note-taking experience!
""")
input_method = st.radio("Choose input method:", ("Upload Document", "Enter Text"))
if input_method == "Upload Document":
uploaded_file = st.file_uploader("Upload a document", type=["pdf", "txt", "md", "docx"])
if uploaded_file:
file_type = uploaded_file.name.split('.')[-1].lower()
file_content = uploaded_file.read()
st.success("Document uploaded successfully!")
with st.spinner("Processing document..."):
retriever = process_document(file_content, file_type)
st.session_state.retriever = retriever
st.success("Document processed!")
elif input_method == "Enter Text":
text_input = st.text_area("Enter your text here:", height=200)
if text_input:
with st.spinner("Processing text..."):
retriever = process_document(text_input, 'txt')
st.session_state.retriever = retriever
st.success("Text processed!")
topic = st.text_input("Enter the topic for note generation:")
col1, col2 = st.columns(2)
with col1:
style = st.selectbox("Note Style", ["Concise", "Detailed", "Academic", "Casual"])
with col2:
length = st.selectbox("Note Length", ["Short", "Medium", "Long"])
if st.button("Generate Notes"):
if topic and hasattr(st.session_state, 'retriever'):
with st.spinner("Generating notes..."):
try:
notes = generate_notes(st.session_state.retriever, topic, style, length)
st.subheader("Generated Notes:")
st.markdown(notes)
# Download button for the generated notes
st.download_button(
label="Download Notes",
data=notes,
file_name=f"{topic.replace(' ', '_')}_notes.txt",
mime="text/plain"
)
# Save notes
if st.button("Save Notes"):
save_notes(notes, topic)
st.success("Notes saved successfully!")
except Exception as e:
st.error(f"An error occurred while generating notes: {str(e)}")
else:
st.warning("Please upload a document or enter text, and specify a topic before generating notes.")
# Display saved notes
st.sidebar.subheader("Saved Notes")
saved_notes = load_notes_data()
for i, note in enumerate(saved_notes):
if st.sidebar.button(f"{note['topic']} - {note['timestamp'][:10]}", key=f"saved_note_{i}"):
st.subheader(f"Saved Notes: {note['topic']}")
st.markdown(note['notes'])
st.sidebar.markdown("---")
st.sidebar.markdown("Powered by Falcon-180B and Streamlit")
# Add a footer
st.markdown("---")
st.markdown("Created by Your Team Name | © 2024")
if __name__ == "__main__":
main() |