Spaces:
Runtime error
Runtime error
File size: 22,835 Bytes
f1dd031 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 |
import json
import os
import os.path as osp
import shutil
import tempfile
import time
from collections import defaultdict
from itertools import chain
from multiprocessing import Pool
from typing import List, Optional, Sequence, Union
import pandas as pd
import torch
import tqdm
try:
import teta
except ImportError:
teta = None
from pathlib import Path
import mmengine
import mmengine.fileio as fileio
from mmdet.datasets.api_wrappers import COCO
from mmdet.evaluation.metrics.base_video_metric import BaseVideoMetric
from mmdet.registry import METRICS, TASK_UTILS
from mmengine.dist import (all_gather_object, barrier, broadcast,
broadcast_object_list, get_dist_info,
is_main_process)
from mmengine.logging import MMLogger
from scalabel.eval.box_track import BoxTrackResult, bdd100k_to_scalabel
from scalabel.eval.hota import HOTAResult, evaluate_track_hota
from scalabel.eval.hotas import evaluate_seg_track_hota
from scalabel.eval.mot import TrackResult, acc_single_video_mot, evaluate_track
from scalabel.eval.mots import acc_single_video_mots, evaluate_seg_track
from scalabel.eval.teta import TETAResult, evaluate_track_teta
from scalabel.eval.tetas import evaluate_seg_track_teta
from scalabel.label.io import group_and_sort, load, load_label_config
from .utils import mask_postprocess, mask_prepare
cpu_num = os.cpu_count()
NPROC: int = min(4, cpu_num if cpu_num else 1)
MOT_CFG_FILE = os.path.join(
str(Path(__file__).parent.absolute()), "dataset_configs/box_track.toml"
)
MOTS_CFG_FILE = os.path.join(
str(Path(__file__).parent.absolute()), "dataset_configs/seg_track.toml"
)
def get_tmpdir() -> str:
"""return the same tmpdir for all processes."""
rank, world_size = get_dist_info()
MAX_LEN = 512
# 32 is whitespace
dir_tensor = torch.full((MAX_LEN,), 32, dtype=torch.uint8)
if rank == 0:
tmpdir = tempfile.mkdtemp()
tmpdir = torch.tensor(bytearray(tmpdir.encode()), dtype=torch.uint8)
dir_tensor[: len(tmpdir)] = tmpdir
broadcast(dir_tensor, 0)
tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip()
return tmpdir
@METRICS.register_module()
class BDDTETAMetric(BaseVideoMetric):
"""Evaluation metrics for MOT Challenge.
Args:
metric (str | list[str]): Metrics to be evaluated. Options are
'HOTA', 'CLEAR', 'Identity'.
Defaults to ['HOTA', 'CLEAR', 'Identity'].
outfile_prefix (str, optional): Path to save the formatted results.
Defaults to None.
track_iou_thr (float): IoU threshold for tracking evaluation.
Defaults to 0.5.
benchmark (str): Benchmark to be evaluated. Defaults to 'MOT17'.
format_only (bool): If True, only formatting the results to the
official format and not performing evaluation. Defaults to False.
postprocess_tracklet_cfg (List[dict], optional): configs for tracklets
postprocessing methods. `InterpolateTracklets` is supported.
Defaults to []
- InterpolateTracklets:
- min_num_frames (int, optional): The minimum length of a
track that will be interpolated. Defaults to 5.
- max_num_frames (int, optional): The maximum disconnected
length in a track. Defaults to 20.
- use_gsi (bool, optional): Whether to use the GSI (Gaussian-
smoothed interpolation) method. Defaults to False.
- smooth_tau (int, optional): smoothing parameter in GSI.
Defaults to 10.
collect_device (str): Device name used for collecting results from
different ranks during distributed training. Must be 'cpu' or
'gpu'. Defaults to 'cpu'.
prefix (str, optional): The prefix that will be added in the metric
names to disambiguate homonymous metrics of different evaluators.
If prefix is not provided in the argument, self.default_prefix
will be used instead. Default: None
Returns:
"""
TRACKER = "masa-tracker"
allowed_metrics = ["TETA", "HOTA", "CLEAR"]
default_prefix: Optional[str] = "tao_teta_metric"
def __init__(
self,
metric: Union[str, List[str]] = ["TETA", "HOTA", "CLEAR"],
outfile_prefix: Optional[str] = None,
track_iou_thr: float = 0.5,
format_only: bool = False,
ann_file: Optional[str] = None,
scalabel_gt: Optional[str] = None,
dataset_type: str = "BDDVideoDataset",
use_postprocess: bool = False,
postprocess_tracklet_cfg: Optional[List[dict]] = [],
collect_device: str = "cpu",
tcc: bool = True,
scalabel_format=True,
with_mask=False,
prefix: Optional[str] = None,
) -> None:
super().__init__(collect_device=collect_device, prefix=prefix)
if teta is None:
raise RuntimeError(
"teta is not installed,"
"please install it by: python -m pip install git+https://github.com/SysCV/tet.git/#subdirectory=teta "
)
if isinstance(metric, list):
metrics = metric
elif isinstance(metric, str):
metrics = [metric]
else:
raise TypeError("metric must be a list or a str.")
for metric in metrics:
if metric not in self.allowed_metrics:
raise KeyError(f"metric {metric} is not supported.")
self.metrics = metrics
self.format_only = format_only
self.scalabel_format = scalabel_format
if self.format_only:
assert outfile_prefix is not None, "outfile_prefix must be not"
"None when format_only is True, otherwise the result files will"
"be saved to a temp directory which will be cleaned up at the end."
self.use_postprocess = use_postprocess
self.postprocess_tracklet_cfg = postprocess_tracklet_cfg.copy()
self.postprocess_tracklet_methods = [
TASK_UTILS.build(cfg) for cfg in self.postprocess_tracklet_cfg
]
self.track_iou_thr = track_iou_thr
self.tmp_dir = tempfile.TemporaryDirectory()
self.tmp_dir.name = get_tmpdir()
self.seq_pred = defaultdict(lambda: [])
self.gt_dir = self._get_gt_dir()
self.pred_dir = self._get_pred_dir(outfile_prefix)
self.outfile_prefix = outfile_prefix
self.ann_file = ann_file
self.scalabel_gt = scalabel_gt
self.tcc = tcc
self.with_mask = with_mask
with fileio.get_local_path(self.ann_file) as local_path:
self.coco = COCO(local_path)
# get the class list according to the dataset type
assert dataset_type in ["BDDVideoDataset"]
if dataset_type == "BDDVideoDataset":
from masa.datasets import BDDVideoDataset
self.class_list = BDDVideoDataset.METAINFO["classes"]
self.cat_ids = self.coco.get_cat_ids(cat_names=self.class_list)
def __del__(self):
# To avoid tmpdir being cleaned up too early, because in multiple
# consecutive ValLoops, the value of `self.tmp_dir.name` is unchanged,
# and calling `tmp_dir.cleanup()` in compute_metrics will cause errors.
self.tmp_dir.cleanup()
def _get_pred_dir(self, outfile_prefix):
"""Get directory to save the prediction results."""
logger: MMLogger = MMLogger.get_current_instance()
if outfile_prefix is None:
outfile_prefix = self.tmp_dir.name
else:
if osp.exists(outfile_prefix) and is_main_process():
logger.info("remove previous results.")
shutil.rmtree(outfile_prefix)
pred_dir = osp.join(outfile_prefix, self.TRACKER)
os.makedirs(pred_dir, exist_ok=True)
return pred_dir
def _get_gt_dir(self):
"""Get directory to save the gt files."""
output_dir = osp.join(self.tmp_dir.name, "gt")
os.makedirs(output_dir, exist_ok=True)
return output_dir
def transform_gt_and_pred(self, img_data_sample):
# load predictions
assert "pred_track_instances" in img_data_sample
pred_instances = img_data_sample["pred_track_instances"]
pred_instances_list = []
for i in range(len(pred_instances["instances_id"])):
data_dict = dict()
data_dict["image_id"] = img_data_sample["img_id"]
data_dict["track_id"] = int(pred_instances["instances_id"][i])
data_dict["bbox"] = self.xyxy2xywh(pred_instances["bboxes"][i])
data_dict["score"] = float(pred_instances["scores"][i])
data_dict["category_id"] = self.cat_ids[pred_instances["labels"][i]]
data_dict["video_id"] = img_data_sample["video_id"]
if self.with_mask:
if isinstance(pred_instances["masks"][i]["counts"], bytes):
pred_instances["masks"][i]["counts"] = pred_instances["masks"][i][
"counts"
].decode()
data_dict["segmentation"] = pred_instances["masks"][i]
pred_instances_list.append(data_dict)
return pred_instances_list
def process_image(self, data_samples, video_len):
img_data_sample = data_samples[0].to_dict()
video_id = img_data_sample["video_id"]
pred_instances_list = self.transform_gt_and_pred(img_data_sample)
self.seq_pred[video_id].extend(pred_instances_list)
def process_video(self, data_samples):
video_len = len(data_samples)
for frame_id in range(video_len):
img_data_sample = data_samples[frame_id].to_dict()
# load basic info
video_id = img_data_sample["video_id"]
pred_instances_list = self.transform_gt_and_pred(img_data_sample)
self.seq_pred[video_id].extend(pred_instances_list)
def compute_metrics(self, results: list = None) -> dict:
logger: MMLogger = MMLogger.get_current_instance()
eval_results = dict()
if self.format_only:
logger.info("Only formatting results to the official format.")
return eval_results
resfile_path = os.path.join(
self.outfile_prefix, "bdd_track_scalabel_format.json"
)
bdd100k_config = load_label_config(MOT_CFG_FILE)
print("Start loading.")
gts = group_and_sort(load(self.scalabel_gt).frames)
results = group_and_sort(load(resfile_path).frames)
print("gt_len", len(gts), "results", len(results))
print("Finish loading.")
print("Start evaluation")
print("Ignore unknown cats")
logger.info("Tracking evaluation.")
t = time.time()
gts = [bdd100k_to_scalabel(gt, bdd100k_config) for gt in gts]
results = [bdd100k_to_scalabel(result, bdd100k_config) for result in results]
if "CLEAR" in self.metrics:
if self.with_mask:
mot_result = evaluate_seg_track(
acc_single_video_mots,
gts,
results,
bdd100k_config,
ignore_unknown_cats=True,
nproc=NPROC,
)
else:
mot_result = evaluate_track(
acc_single_video_mot,
gts,
results,
bdd100k_config,
ignore_unknown_cats=True,
nproc=NPROC,
)
print("CLEAR and IDF1 results :")
print(mot_result)
print(mot_result.summary())
if "HOTA" in self.metrics:
if self.with_mask:
hota_result = evaluate_seg_track_hota(
gts, results, bdd100k_config, NPROC
)
else:
hota_result = evaluate_track_hota(gts, results, bdd100k_config, NPROC)
print("HOTA results :")
print(hota_result)
print(hota_result.summary())
if "TETA" in self.metrics:
if self.with_mask:
teta_result = evaluate_seg_track_teta(
gts, results, bdd100k_config, NPROC
)
else:
teta_result = evaluate_track_teta(gts, results, bdd100k_config, NPROC)
print("TETA results :")
print(teta_result)
print(teta_result.summary())
if (
"CLEAR" in self.metrics
and "HOTA" in self.metrics
and "TETA" in self.metrics
):
print("Aggregated results: ")
combined_result = BoxTrackResult(
**{**mot_result.dict(), **hota_result.dict(), **teta_result.dict()}
)
print(combined_result)
print(combined_result.summary())
t = time.time() - t
logger.info("evaluation finishes with %.1f s.", t)
print("Completed evaluation")
return eval_results
def evaluate(self, size: int = 1) -> dict:
"""Evaluate the model performance of the whole dataset after processing
all batches.
Args:
size (int): Length of the entire validation dataset.
Defaults to None.
Returns:
dict: Evaluation metrics dict on the val dataset. The keys are the
names of the metrics, and the values are corresponding results.
"""
logger: MMLogger = MMLogger.get_current_instance()
logger.info(f"Wait for all processes to complete prediction.")
# wait for all processes to complete prediction.
barrier()
logger.info(f"Start gathering tracking results.")
# gather seq_info and convert the list of dict to a dict.
# convert self.seq_info to dict first to make it picklable.
gathered_seq_info = all_gather_object(dict(self.seq_pred))
if is_main_process():
all_seq_pred = dict()
for _seq_info in gathered_seq_info:
all_seq_pred.update(_seq_info)
all_seq_pred = self.compute_global_track_id(all_seq_pred)
# merge all the values (list of pred in each videos) into a single long list
all_seq_pred_json = list(chain.from_iterable(all_seq_pred.values()))
if self.scalabel_format:
all_seq_pred_json = self.format_scalabel_pred(all_seq_pred_json)
result_files_path = (
f"{self.outfile_prefix}/bdd_track_scalabel_format.json"
)
logger.info(f"Saving json pred file into {result_files_path}")
mmengine.dump(all_seq_pred_json, result_files_path)
else:
if self.tcc and all_seq_pred_json:
all_seq_pred_json = self.majority_vote(all_seq_pred_json)
else:
all_seq_pred_json = all_seq_pred_json
result_files_path = f"{self.outfile_prefix}/bdd_track_cocofmt.json"
logger.info(f"Saving json pred file into {result_files_path}")
mmengine.dump(all_seq_pred_json, result_files_path)
logger.info(f"Start evaluation")
_metrics = self.compute_metrics()
# Add prefix to metric names
if self.prefix:
_metrics = {"/".join((self.prefix, k)): v for k, v in _metrics.items()}
metrics = [_metrics]
else:
metrics = [None] # type: ignore
broadcast_object_list(metrics)
self.seq_pred.clear()
return metrics[0]
def format_scalabel_pred(self, all_seq_pred_json):
"""Convert the prediction results to the format of Scalabel.
Args:
all_seq_pred_json (list): The prediction results.
Returns:
list: The formatted prediction results.
"""
bdd_scalabel_gt = json.load(open(self.ann_file))
bdd_cid_cinfo_mapping = {}
for c in bdd_scalabel_gt["categories"]:
if c["id"] not in bdd_cid_cinfo_mapping:
bdd_cid_cinfo_mapping[c["id"]] = c
# imid info mapping
imid_iminfo_mapping = {}
for i in bdd_scalabel_gt["images"]:
if i["id"] not in imid_iminfo_mapping:
imid_iminfo_mapping[i["id"]] = i
# vidid info mapping
vid_vinfo_mapping = {}
for i in bdd_scalabel_gt["videos"]:
if i["id"] not in vid_vinfo_mapping:
vid_vinfo_mapping[i["id"]] = i
if self.tcc and all_seq_pred_json:
mc_res = self.majority_vote(all_seq_pred_json)
else:
mc_res = all_seq_pred_json
imid_results_mapping = self.convert_coco_result_to_bdd(
mc_res, bdd_cid_cinfo_mapping, imid_iminfo_mapping, vid_vinfo_mapping,
)
if self.with_mask:
scalabel_results = self.overlapping_masks_removal(imid_results_mapping)
else:
scalabel_results = list(imid_results_mapping.values())
return scalabel_results
def overlapping_masks_removal(self, imid_results_mapping, nproc=NPROC):
with Pool(nproc) as pool:
print("\nCollecting mask information")
mask_infors = pool.map(
mask_prepare, tqdm.tqdm(list(imid_results_mapping.values()))
)
print("\nRemoving overlaps and retrieving valid masks and indexes.")
results = pool.starmap(mask_postprocess, mask_infors)
return results
def compute_global_track_id(self, all_seq_pred):
max_track_id = 0
for video_id, seq_pred in all_seq_pred.items():
track_ids = []
for frame_pred in seq_pred:
track_ids.append(frame_pred["track_id"])
frame_pred["track_id"] += max_track_id
track_ids = list(set(track_ids))
if track_ids:
max_track_id += max(track_ids) + 1
return all_seq_pred
def majority_vote(self, prediction):
tid_res_mapping = {}
for res in prediction:
tid = res["track_id"]
if tid not in tid_res_mapping:
tid_res_mapping[tid] = [res]
else:
tid_res_mapping[tid].append(res)
# change the results to data frame
df_pred_res = pd.DataFrame(prediction)
# group the results by track_id
# df_pred_res = df_pred_res.apply(changebbox, axis=1)
groued_df_pred_res = df_pred_res.groupby("track_id")
# change the majority
class_by_majority_count_res = []
for tid, group in tqdm.tqdm(groued_df_pred_res):
cid = group["category_id"].mode()[0]
group["category_id"] = cid
dict_list = group.to_dict("records")
class_by_majority_count_res += dict_list
return class_by_majority_count_res
def xyxy2xywh(self, bbox):
"""Convert ``xyxy`` style bounding boxes to ``xywh`` style for COCO
evaluation.
Args:
bbox (numpy.ndarray): The bounding boxes, shape (4, ), in
``xyxy`` order.
Returns:
list[float]: The converted bounding boxes, in ``xywh`` order.
"""
_bbox = bbox.tolist()
return [
_bbox[0],
_bbox[1],
_bbox[2] - _bbox[0],
_bbox[3] - _bbox[1],
]
def convert_pred_to_label_format(self, coco_pred, bdd_cid_cinfo_mapping):
"""
convert the single prediction result to label format for bdd
coco_pred:
'image_id': 1,
'bbox': [998.872802734375,
379.5665283203125,
35.427490234375,
59.21759033203125],
'score': 0.9133418202400208,
'category_id': 1,
'video_id': 1,
'track_id': 16
- labels [ ]: list of dicts
- id: string
- category: string
- box2d:
- x1: float
- y1: float
- x2: float
- y2: float
Args:
coco_pred: coco_pred dict.
bdd_cid_cinfo_mapping: bdd category id to category infomation mapping.
Return:
a new dict in bdd format.
"""
new_label = {}
new_label["id"] = coco_pred["track_id"]
new_label["score"] = coco_pred["score"]
new_label["category"] = bdd_cid_cinfo_mapping[coco_pred["category_id"]]["name"]
new_label["box2d"] = {
"x1": coco_pred["bbox"][0],
"y1": coco_pred["bbox"][1],
"x2": coco_pred["bbox"][0] + coco_pred["bbox"][2],
"y2": coco_pred["bbox"][1] + coco_pred["bbox"][3],
}
if "segmentation" in coco_pred:
new_label["rle"] = coco_pred["segmentation"]
return new_label
def convert_coco_result_to_bdd(
self, new_pred, bdd_cid_cinfo_mapping, imid_iminfo_mapping, vid_vinfo_mapping
):
"""
Args:
new_pred: list of coco predictions
bdd_cid_cinfo_mapping: bdd category id to category infomation mapping.
Return:
submitable result for bdd eval
"""
imid_new_dict_mapping = {}
for item in tqdm.tqdm(new_pred):
imid = item["image_id"]
if imid not in imid_new_dict_mapping:
new_dict = {}
new_dict["name"] = imid_iminfo_mapping[imid]["file_name"]
new_dict["videoName"] = vid_vinfo_mapping[
imid_iminfo_mapping[imid]["video_id"]
]["name"]
new_dict["frameIndex"] = imid_iminfo_mapping[imid]["frame_id"]
new_dict["labels"] = [
self.convert_pred_to_label_format(item, bdd_cid_cinfo_mapping)
]
imid_new_dict_mapping[imid] = new_dict
else:
imid_new_dict_mapping[imid]["labels"].append(
self.convert_pred_to_label_format(item, bdd_cid_cinfo_mapping)
)
for key in imid_iminfo_mapping:
if key not in imid_new_dict_mapping:
new_dict = {}
new_dict["name"] = imid_iminfo_mapping[key]["file_name"]
new_dict["videoName"] = vid_vinfo_mapping[
imid_iminfo_mapping[key]["video_id"]
]["name"]
new_dict["frameIndex"] = imid_iminfo_mapping[key]["frame_id"]
new_dict["labels"] = []
imid_new_dict_mapping[key] = new_dict
return imid_new_dict_mapping
|