File size: 9,989 Bytes
f1dd031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import logging
import os.path as osp
import pickle
from typing import List, Union

import h5py
import tqdm
from mmdet.datasets.api_wrappers import COCO
from mmdet.datasets.base_det_dataset import BaseDetDataset
from mmdet.registry import DATASETS
from mmengine.fileio import get_local_path
from mmengine.logging import print_log


@DATASETS.register_module()
class MASADataset(BaseDetDataset):
    """Dataset for COCO."""

    METAINFO = {
        "classes": ("object"),
        # palette is a list of color tuples, which is used for visualization.
        "palette": [(220, 20, 60)],
    }
    COCOAPI = COCO
    # ann_id is unique in coco dataset.
    ANN_ID_UNIQUE = True

    def __init__(self, anno_hdf5_path=None, img_prefix=None, *args, **kwargs):

        self.anno_hdf5_path = anno_hdf5_path
        self.img_prefix = img_prefix
        super().__init__(*args, **kwargs)

    def read_dicts_from_hdf5(self, hdf5_file_path, pkl_file_path):
        with h5py.File(hdf5_file_path, "r") as hf:
            # Retrieve the dataset corresponding to the specified .pkl file path
            dataset = hf[pkl_file_path]
            binary_data = dataset[()]
        # Deserialize the binary data and load the list of dictionaries
        list_of_dicts = pickle.loads(binary_data)
        return list_of_dicts

    def get_ann_info(self, img_info):
        """Get COCO annotation by index.

        Args:
            idx (int): Index of data.

        Returns:
            dict: Annotation info of specified index.
        """

        if self.anno_hdf5_path is not None:
            try:
                ann_info = self.read_dicts_from_hdf5(
                    self.anno_hdf5_path, img_info["file_name"].replace(".jpg", ".pkl")
                )
                return ann_info
            except:
                print(self.anno_hdf5_path)
                print(img_info["file_name"].replace(".jpg", ".pkl"))
                return None
        else:
            img_id = img_info["id"]
            ann_ids = self.coco.get_ann_ids(img_ids=[img_id], cat_ids=self.cat_ids)
            ann_info = self.coco.load_anns(ann_ids)
            return ann_info

    def __getitem__(self, idx: int) -> dict:
        """Get the idx-th image and data information of dataset after
        ``self.pipeline``, and ``full_init`` will be called if the dataset has
        not been fully initialized.

        During training phase, if ``self.pipeline`` get ``None``,
        ``self._rand_another`` will be called until a valid image is fetched or
         the maximum limit of refetech is reached.

        Args:
            idx (int): The index of self.data_list.

        Returns:
            dict: The idx-th image and data information of dataset after
            ``self.pipeline``.
        """
        # Performing full initialization by calling `__getitem__` will consume
        # extra memory. If a dataset is not fully initialized by setting
        # `lazy_init=True` and then fed into the dataloader. Different workers
        # will simultaneously read and parse the annotation. It will cost more
        # time and memory, although this may work. Therefore, it is recommended
        # to manually call `full_init` before dataset fed into dataloader to
        # ensure all workers use shared RAM from master process.
        if not self._fully_initialized:
            print_log(
                "Please call `full_init()` method manually to accelerate " "the speed.",
                logger="current",
                level=logging.WARNING,
            )
            self.full_init()

        if self.test_mode:
            data = self.prepare_data(idx)
            if data is None:
                raise Exception(
                    "Test time pipline should not get `None` " "data_sample"
                )
            return data

        for _ in range(self.max_refetch + 1):
            try:
                data = self.prepare_data(idx)
            except Exception as e:
                data = None
            # Broken images or random augmentations may cause the returned data
            # to be None
            if data is None:
                idx = self._rand_another()
                continue
            return data

        raise Exception(
            f"Cannot find valid image after {self.max_refetch}! "
            "Please check your image path and pipeline"
        )

    def load_data_list(self) -> List[dict]:
        """Load annotations from an annotation file named as ``self.ann_file``

        Returns:
            List[dict]: A list of annotation.
        """  # noqa: E501
        with get_local_path(
            self.ann_file, backend_args=self.backend_args
        ) as local_path:
            self.coco = self.COCOAPI(local_path)
        # The order of returned `cat_ids` will not
        # change with the order of the `classes`
        self.cat_ids = self.coco.get_cat_ids(cat_names=self.metainfo["classes"])
        self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)}
        self.cat_img_map = copy.deepcopy(self.coco.cat_img_map)

        img_ids = self.coco.get_img_ids()
        data_list = []
        total_ann_ids = []
        print("Loading data list...")
        for img_id in tqdm.tqdm(img_ids):
            raw_img_info = self.coco.load_imgs([img_id])[0]
            raw_img_info["img_id"] = img_id
            ann_ids = self.coco.get_ann_ids(img_ids=[img_id])
            raw_ann_info = self.coco.load_anns(ann_ids)

            total_ann_ids.extend(ann_ids)

            parsed_data_info = self.parse_data_info(
                {"raw_ann_info": raw_ann_info, "raw_img_info": raw_img_info}
            )
            data_list.append(parsed_data_info)
        if self.ANN_ID_UNIQUE:
            assert len(set(total_ann_ids)) == len(
                total_ann_ids
            ), f"Annotation ids in '{self.ann_file}' are not unique!"

        del self.coco

        return data_list

    def parse_data_info(self, raw_data_info: dict) -> Union[dict, List[dict]]:
        """Parse raw annotation to target format.

        Args:
            raw_data_info (dict): Raw data information load from ``ann_file``

        Returns:
            Union[dict, List[dict]]: Parsed annotation.
        """
        img_info = raw_data_info["raw_img_info"]
        ann_info = raw_data_info["raw_ann_info"]

        data_info = {}

        # TODO: need to change data_prefix['img'] to data_prefix['img_path']
        img_path = osp.join(self.data_prefix["img"], img_info["file_name"])
        if self.data_prefix.get("seg", None):
            seg_map_path = osp.join(
                self.data_prefix["seg"],
                img_info["file_name"].rsplit(".", 1)[0] + self.seg_map_suffix,
            )
        else:
            seg_map_path = None
        data_info["img_path"] = img_path
        data_info["img_id"] = img_info["img_id"]
        data_info["seg_map_path"] = seg_map_path
        data_info["height"] = img_info["height"]
        data_info["width"] = img_info["width"]

        if self.return_classes:
            data_info["text"] = self.metainfo["classes"]
            data_info["caption_prompt"] = self.caption_prompt
            data_info["custom_entities"] = True

        instances = []
        for i, ann in enumerate(ann_info):
            instance = {}

            if ann.get("ignore", False):
                continue
            x1, y1, w, h = ann["bbox"]
            inter_w = max(0, min(x1 + w, img_info["width"]) - max(x1, 0))
            inter_h = max(0, min(y1 + h, img_info["height"]) - max(y1, 0))
            if inter_w * inter_h == 0:
                continue
            if ann["area"] <= 0 or w < 1 or h < 1:
                continue
            if "category_id" not in ann:
                ann["category_id"] = 1
            if ann["category_id"] not in self.cat_ids:
                continue
            bbox = [x1, y1, x1 + w, y1 + h]

            if ann.get("iscrowd", False):
                instance["ignore_flag"] = 1
            else:
                instance["ignore_flag"] = 0
            instance["bbox"] = bbox
            instance["bbox_label"] = self.cat2label[ann["category_id"]]

            if ann.get("segmentation", None):
                instance["mask"] = ann["segmentation"]

            if "instance_id" in ann:
                instance["instance_id"] = ann["instance_id"]
            else:
                instance["instance_id"] = ann["id"]

            instances.append(instance)
        data_info["instances"] = instances
        return data_info

    def filter_data(self) -> List[dict]:
        """Filter annotations according to filter_cfg.

        Returns:
            List[dict]: Filtered results.
        """
        if self.test_mode:
            return self.data_list

        if self.filter_cfg is None:
            return self.data_list

        filter_empty_gt = self.filter_cfg.get("filter_empty_gt", False)
        min_size = self.filter_cfg.get("min_size", 0)

        # obtain images that contain annotation
        ids_with_ann = set(data_info["img_id"] for data_info in self.data_list)
        # obtain images that contain annotations of the required categories
        ids_in_cat = set()
        for i, class_id in enumerate(self.cat_ids):
            ids_in_cat |= set(self.cat_img_map[class_id])
        # merge the image id sets of the two conditions and use the merged set
        # to filter out images if self.filter_empty_gt=True
        ids_in_cat &= ids_with_ann

        valid_data_infos = []
        for i, data_info in enumerate(self.data_list):
            img_id = data_info["img_id"]
            width = data_info["width"]
            height = data_info["height"]
            if filter_empty_gt and img_id not in ids_in_cat:
                continue
            if min(width, height) >= min_size:
                valid_data_infos.append(data_info)

        return valid_data_infos