File size: 7,278 Bytes
f1dd031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
from typing import Optional, Sequence

import numpy as np
from mmcv.transforms import to_tensor
from mmcv.transforms.base import BaseTransform
from mmdet.registry import TRANSFORMS
from mmdet.structures import DetDataSample, TrackDataSample
from mmdet.structures.bbox import BaseBoxes
from mmengine.structures import InstanceData


@TRANSFORMS.register_module(force=True)
class PackMatchInputs(BaseTransform):
    """Pack the inputs data for the multi object tracking and video instance
    segmentation. All the information of images are packed to ``inputs``. All
    the information except images are packed to ``data_samples``. In order to
    get the original annotaiton and meta info, we add `instances` key into meta
    keys.

    Args:
        meta_keys (Sequence[str]): Meta keys to be collected in
            ``data_sample.metainfo``. Defaults to None.
        default_meta_keys (tuple): Default meta keys. Defaults to ('img_id',
            'img_path', 'ori_shape', 'img_shape', 'scale_factor',
            'flip', 'flip_direction', 'frame_id', 'is_video_data',
            'video_id', 'video_length', 'instances').
    """

    mapping_table = {
        "gt_bboxes": "bboxes",
        "gt_bboxes_labels": "labels",
        "gt_masks": "masks",
        "gt_instances_ids": "instances_ids",
    }

    def __init__(
        self,
        meta_keys: Optional[dict] = None,
        default_meta_keys: tuple = (
            "img_id",
            "img_path",
            "ori_shape",
            "img_shape",
            "scale_factor",
            "flip",
            "flip_direction",
            "frame_id",
            "video_id",
            "video_length",
            "ori_video_length",
            "instances",
        ),
    ):
        self.meta_keys = default_meta_keys
        if meta_keys is not None:
            if isinstance(meta_keys, str):
                meta_keys = (meta_keys,)
            else:
                assert isinstance(meta_keys, tuple), "meta_keys must be str or tuple"
            self.meta_keys += meta_keys

    def transform(self, results: dict) -> dict:
        """Method to pack the input data.
        Args:
            results (dict): Result dict from the data pipeline.
        Returns:
            dict:
            - 'inputs' (dict[Tensor]): The forward data of models.
            - 'data_samples' (obj:`TrackDataSample`): The annotation info of
                the samples.
        """
        packed_results = dict()
        packed_results["inputs"] = dict()

        # 1. Pack images
        if "img" in results:
            imgs = results["img"]
            imgs = np.stack(imgs, axis=0)
            # imgs = imgs.transpose(0, 3, 1, 2)
            if not imgs.flags.c_contiguous:
                imgs = np.ascontiguousarray(imgs.transpose(0, 3, 1, 2))
                imgs = to_tensor(imgs)
            else:
                imgs = to_tensor(imgs).permute(0, 3, 1, 2).contiguous()
            packed_results["inputs"] = imgs

        # 2. Pack InstanceData
        if "gt_ignore_flags" in results:
            gt_ignore_flags_list = results["gt_ignore_flags"]
            valid_idx_list, ignore_idx_list = [], []
            for gt_ignore_flags in gt_ignore_flags_list:
                valid_idx = np.where(gt_ignore_flags == 0)[0]
                ignore_idx = np.where(gt_ignore_flags == 1)[0]
                valid_idx_list.append(valid_idx)
                ignore_idx_list.append(ignore_idx)

        assert "img_id" in results, "'img_id' must contained in the results "
        "for counting the number of images"

        num_imgs = len(results["img_id"])
        instance_data_list = [InstanceData() for _ in range(num_imgs)]
        ignore_instance_data_list = [InstanceData() for _ in range(num_imgs)]

        for key in self.mapping_table.keys():
            if key not in results:
                continue
            if key == "gt_masks":
                mapped_key = self.mapping_table[key]
                gt_masks_list = results[key]
                if "gt_ignore_flags" in results:
                    for i, gt_mask in enumerate(gt_masks_list):
                        valid_idx, ignore_idx = valid_idx_list[i], ignore_idx_list[i]
                        instance_data_list[i][mapped_key] = gt_mask[valid_idx]
                        ignore_instance_data_list[i][mapped_key] = gt_mask[ignore_idx]

                else:
                    for i, gt_mask in enumerate(gt_masks_list):
                        instance_data_list[i][mapped_key] = gt_mask

            elif isinstance(results[key][0], BaseBoxes):
                mapped_key = self.mapping_table[key]
                gt_bboxes_list = results[key]
                if "gt_ignore_flags" in results:
                    for i, gt_bbox in enumerate(gt_bboxes_list):
                        gt_bbox = gt_bbox.tensor
                        valid_idx, ignore_idx = valid_idx_list[i], ignore_idx_list[i]
                        instance_data_list[i][mapped_key] = gt_bbox[valid_idx]
                        ignore_instance_data_list[i][mapped_key] = gt_bbox[ignore_idx]

            else:
                anns_list = results[key]
                if "gt_ignore_flags" in results:
                    for i, ann in enumerate(anns_list):
                        valid_idx, ignore_idx = valid_idx_list[i], ignore_idx_list[i]
                        instance_data_list[i][self.mapping_table[key]] = to_tensor(
                            ann[valid_idx]
                        )
                        ignore_instance_data_list[i][
                            self.mapping_table[key]
                        ] = to_tensor(ann[ignore_idx])
                else:
                    for i, ann in enumerate(anns_list):
                        instance_data_list[i][self.mapping_table[key]] = to_tensor(ann)

        det_data_samples_list = []
        for i in range(num_imgs):
            det_data_sample = DetDataSample()
            det_data_sample.gt_instances = instance_data_list[i]
            det_data_sample.ignored_instances = ignore_instance_data_list[i]
            det_data_samples_list.append(det_data_sample)

        # 3. Pack metainfo
        for key in self.meta_keys:
            if key not in results:
                continue
            img_metas_list = results[key]
            for i, img_meta in enumerate(img_metas_list):
                det_data_samples_list[i].set_metainfo({f"{key}": img_meta})

        track_data_sample = TrackDataSample()
        track_data_sample.video_data_samples = det_data_samples_list
        if "key_frame_flags" in results:
            key_frame_flags = np.asarray(results["key_frame_flags"])
            key_frames_inds = np.where(key_frame_flags)[0].tolist()
            ref_frames_inds = np.where(~key_frame_flags)[0].tolist()
            track_data_sample.set_metainfo(dict(key_frames_inds=key_frames_inds))
            track_data_sample.set_metainfo(dict(ref_frames_inds=ref_frames_inds))

        packed_results["data_samples"] = track_data_sample
        return packed_results

    def __repr__(self) -> str:
        repr_str = self.__class__.__name__
        repr_str += f"meta_keys={self.meta_keys}, "
        repr_str += f"default_meta_keys={self.default_meta_keys})"
        return repr_str