Spaces:
Runtime error
Runtime error
File size: 42,941 Bytes
f1dd031 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 |
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import math
import warnings
from typing import List, Optional, Sequence, Tuple, Union
import cv2
import mmcv
import numpy as np
from mmcv.image import imresize
from mmcv.transforms import BaseTransform
from mmcv.transforms.utils import cache_randomness
from mmdet.registry import TRANSFORMS
from mmdet.structures.bbox import autocast_box_type
from mmdet.structures.mask import BitmapMasks
from mmdet.utils import log_img_scale
from mmengine.dataset import BaseDataset
from numpy import random
try:
from imagecorruptions import corrupt
except ImportError:
corrupt = None
try:
import albumentations
from albumentations import Compose
except ImportError:
albumentations = None
Compose = None
Number = Union[int, float]
def _fixed_scale_size(
size: Tuple[int, int], scale: Union[float, int, tuple],
) -> Tuple[int, int]:
"""Rescale a size by a ratio.
Args:
size (tuple[int]): (w, h).
scale (float | tuple(float)): Scaling factor.
Returns:
tuple[int]: scaled size.
"""
if isinstance(scale, (float, int)):
scale = (scale, scale)
w, h = size
# don't need o.5 offset
return int(w * float(scale[0])), int(h * float(scale[1]))
def rescale_size(
old_size: tuple, scale: Union[float, int, tuple], return_scale: bool = False
) -> tuple:
"""Calculate the new size to be rescaled to.
Args:
old_size (tuple[int]): The old size (w, h) of image.
scale (float | tuple[int]): The scaling factor or maximum size.
If it is a float number, then the image will be rescaled by this
factor, else if it is a tuple of 2 integers, then the image will
be rescaled as large as possible within the scale.
return_scale (bool): Whether to return the scaling factor besides the
rescaled image size.
Returns:
tuple[int]: The new rescaled image size.
"""
w, h = old_size
if isinstance(scale, (float, int)):
if scale <= 0:
raise ValueError(f"Invalid scale {scale}, must be positive.")
scale_factor = scale
elif isinstance(scale, tuple):
max_long_edge = max(scale)
max_short_edge = min(scale)
scale_factor = min(max_long_edge / max(h, w), max_short_edge / min(h, w))
else:
raise TypeError(
f"Scale must be a number or tuple of int, but got {type(scale)}"
)
# only change this
new_size = _fixed_scale_size((w, h), scale_factor)
if return_scale:
return new_size, scale_factor
else:
return new_size
def imrescale(
img: np.ndarray,
scale: Union[float, Tuple[int, int]],
return_scale: bool = False,
interpolation: str = "bilinear",
backend: Optional[str] = None,
) -> Union[np.ndarray, Tuple[np.ndarray, float]]:
"""Resize image while keeping the aspect ratio.
Args:
img (ndarray): The input image.
scale (float | tuple[int]): The scaling factor or maximum size.
If it is a float number, then the image will be rescaled by this
factor, else if it is a tuple of 2 integers, then the image will
be rescaled as large as possible within the scale.
return_scale (bool): Whether to return the scaling factor besides the
rescaled image.
interpolation (str): Same as :func:`resize`.
backend (str | None): Same as :func:`resize`.
Returns:
ndarray: The rescaled image.
"""
h, w = img.shape[:2]
new_size, scale_factor = rescale_size((w, h), scale, return_scale=True)
rescaled_img = imresize(img, new_size, interpolation=interpolation, backend=backend)
if return_scale:
return rescaled_img, scale_factor
else:
return rescaled_img
@TRANSFORMS.register_module(force=True)
class SeqMosaic(BaseTransform):
"""Mosaic augmentation.
Given 4 images, mosaic transform combines them into
one output image. The output image is composed of the parts from each sub-
image.
.. code:: text
mosaic transform
center_x
+------------------------------+
| pad | pad |
| +-----------+ |
| | | |
| | image1 |--------+ |
| | | | |
| | | image2 | |
center_y |----+-------------+-----------|
| | cropped | |
|pad | image3 | image4 |
| | | |
+----|-------------+-----------+
| |
+-------------+
The mosaic transform steps are as follows:
1. Choose the mosaic center as the intersections of 4 images
2. Get the left top image according to the index, and randomly
sample another 3 images from the custom dataset.
3. Sub image will be cropped if image is larger than mosaic patch
Required Keys:
- img
- gt_bboxes (BaseBoxes[torch.float32]) (optional)
- gt_bboxes_labels (np.int64) (optional)
- gt_ignore_flags (bool) (optional)
- mix_results (List[dict])
Modified Keys:
- img
- img_shape
- gt_bboxes (optional)
- gt_bboxes_labels (optional)
- gt_ignore_flags (optional)
- gt_instances_ids (options, only used in MOT/VIS)
Args:
img_scale (Sequence[int]): Image size before mosaic pipeline of single
image. The shape order should be (width, height).
Defaults to (640, 640).
center_ratio_range (Sequence[float]): Center ratio range of mosaic
output. Defaults to (0.5, 1.5).
bbox_clip_border (bool, optional): Whether to clip the objects outside
the border of the image. In some dataset like MOT17, the gt bboxes
are allowed to cross the border of images. Therefore, we don't
need to clip the gt bboxes in these cases. Defaults to True.
pad_val (int): Pad value. Defaults to 114.
prob (float): Probability of applying this transformation.
Defaults to 1.0.
"""
def __init__(
self,
img_scale: Tuple[int, int] = (640, 640),
center_ratio_range: Tuple[float, float] = (0.5, 1.5),
bbox_clip_border: bool = True,
pad_val: float = 114.0,
prob: float = 1.0,
) -> None:
assert isinstance(img_scale, tuple)
assert 0 <= prob <= 1.0, (
"The probability should be in range [0,1]. " f"got {prob}."
)
log_img_scale(img_scale, skip_square=True, shape_order="wh")
self.img_scale = img_scale
self.center_ratio_range = center_ratio_range
self.bbox_clip_border = bbox_clip_border
self.pad_val = pad_val
self.prob = prob
@cache_randomness
def get_indexes(self, dataset: BaseDataset) -> int:
"""Call function to collect indexes.
Args:
dataset (:obj:`MultiImageMixDataset`): The dataset.
Returns:
list: indexes.
"""
indexes = [random.randint(0, len(dataset)) for _ in range(3)]
return indexes
@autocast_box_type()
def transform(self, results: dict) -> dict:
"""Mosaic transform function.
Args:
results (dict): Result dict.
Returns:
dict: Updated result dict.
"""
if random.uniform(0, 1) > self.prob:
return results
assert "mosaic_mix_results" in results
mosaic_bboxes = []
mosaic_bboxes_labels = []
mosaic_ignore_flags = []
mosaic_instances_ids = []
if len(results["img"].shape) == 3:
mosaic_img = np.full(
(int(self.img_scale[1] * 2), int(self.img_scale[0] * 2), 3),
self.pad_val,
dtype=results["img"].dtype,
)
else:
mosaic_img = np.full(
(int(self.img_scale[1] * 2), int(self.img_scale[0] * 2)),
self.pad_val,
dtype=results["img"].dtype,
)
# mosaic center x, y
center_x = int(random.uniform(*self.center_ratio_range) * self.img_scale[0])
center_y = int(random.uniform(*self.center_ratio_range) * self.img_scale[1])
center_position = (center_x, center_y)
loc_strs = ("top_left", "top_right", "bottom_left", "bottom_right")
for i, loc in enumerate(loc_strs):
if loc == "top_left":
results_patch = copy.deepcopy(results)
else:
results_patch = copy.deepcopy(results["mosaic_mix_results"][i - 1])
img_i = results_patch["img"]
h_i, w_i = img_i.shape[:2]
# keep_ratio resize
scale_ratio_i = min(self.img_scale[1] / h_i, self.img_scale[0] / w_i)
img_i = mmcv.imresize(
img_i, (int(w_i * scale_ratio_i), int(h_i * scale_ratio_i))
)
# compute the combine parameters
paste_coord, crop_coord = self._mosaic_combine(
loc, center_position, img_i.shape[:2][::-1]
)
x1_p, y1_p, x2_p, y2_p = paste_coord
x1_c, y1_c, x2_c, y2_c = crop_coord
# crop and paste image
mosaic_img[y1_p:y2_p, x1_p:x2_p] = img_i[y1_c:y2_c, x1_c:x2_c]
# adjust coordinate
gt_bboxes_i = results_patch["gt_bboxes"]
gt_bboxes_labels_i = results_patch["gt_bboxes_labels"]
gt_ignore_flags_i = results_patch["gt_ignore_flags"]
gt_instances_ids_i = results_patch.get("gt_instances_ids", None)
padw = x1_p - x1_c
padh = y1_p - y1_c
gt_bboxes_i.rescale_([scale_ratio_i, scale_ratio_i])
gt_bboxes_i.translate_([padw, padh])
mosaic_bboxes.append(gt_bboxes_i)
mosaic_bboxes_labels.append(gt_bboxes_labels_i)
mosaic_ignore_flags.append(gt_ignore_flags_i)
mosaic_instances_ids.append(gt_instances_ids_i)
if len(mosaic_bboxes_labels) > 0:
mosaic_bboxes = mosaic_bboxes[0].cat(mosaic_bboxes, 0)
mosaic_bboxes_labels = np.concatenate(mosaic_bboxes_labels, 0)
mosaic_ignore_flags = np.concatenate(mosaic_ignore_flags, 0)
mosaic_instances_ids = np.concatenate(mosaic_instances_ids, 0)
if self.bbox_clip_border:
mosaic_bboxes.clip_([2 * self.img_scale[1], 2 * self.img_scale[0]])
# remove outside bboxes
inside_inds = mosaic_bboxes.is_inside(
[2 * self.img_scale[1], 2 * self.img_scale[0]]
).numpy()
mosaic_bboxes = mosaic_bboxes[inside_inds]
mosaic_bboxes_labels = mosaic_bboxes_labels[inside_inds]
mosaic_ignore_flags = mosaic_ignore_flags[inside_inds]
mosaic_instances_ids = mosaic_instances_ids[inside_inds]
results["img"] = mosaic_img
results["img_shape"] = mosaic_img.shape[:2]
results["gt_bboxes"] = mosaic_bboxes
results["gt_bboxes_labels"] = mosaic_bboxes_labels
results["gt_ignore_flags"] = mosaic_ignore_flags
results["gt_instances_ids"] = mosaic_instances_ids
return results
def _mosaic_combine(
self, loc: str, center_position_xy: Sequence[float], img_shape_wh: Sequence[int]
) -> Tuple[Tuple[int], Tuple[int]]:
"""Calculate global coordinate of mosaic image and local coordinate of
cropped sub-image.
Args:
loc (str): Index for the sub-image, loc in ('top_left',
'top_right', 'bottom_left', 'bottom_right').
center_position_xy (Sequence[float]): Mixing center for 4 images,
(x, y).
img_shape_wh (Sequence[int]): Width and height of sub-image
Returns:
tuple[tuple[float]]: Corresponding coordinate of pasting and
cropping
- paste_coord (tuple): paste corner coordinate in mosaic image.
- crop_coord (tuple): crop corner coordinate in mosaic image.
"""
assert loc in ("top_left", "top_right", "bottom_left", "bottom_right")
if loc == "top_left":
# index0 to top left part of image
x1, y1, x2, y2 = (
max(center_position_xy[0] - img_shape_wh[0], 0),
max(center_position_xy[1] - img_shape_wh[1], 0),
center_position_xy[0],
center_position_xy[1],
)
crop_coord = (
img_shape_wh[0] - (x2 - x1),
img_shape_wh[1] - (y2 - y1),
img_shape_wh[0],
img_shape_wh[1],
)
elif loc == "top_right":
# index1 to top right part of image
x1, y1, x2, y2 = (
center_position_xy[0],
max(center_position_xy[1] - img_shape_wh[1], 0),
min(center_position_xy[0] + img_shape_wh[0], self.img_scale[0] * 2),
center_position_xy[1],
)
crop_coord = (
0,
img_shape_wh[1] - (y2 - y1),
min(img_shape_wh[0], x2 - x1),
img_shape_wh[1],
)
elif loc == "bottom_left":
# index2 to bottom left part of image
x1, y1, x2, y2 = (
max(center_position_xy[0] - img_shape_wh[0], 0),
center_position_xy[1],
center_position_xy[0],
min(self.img_scale[1] * 2, center_position_xy[1] + img_shape_wh[1]),
)
crop_coord = (
img_shape_wh[0] - (x2 - x1),
0,
img_shape_wh[0],
min(y2 - y1, img_shape_wh[1]),
)
else:
# index3 to bottom right part of image
x1, y1, x2, y2 = (
center_position_xy[0],
center_position_xy[1],
min(center_position_xy[0] + img_shape_wh[0], self.img_scale[0] * 2),
min(self.img_scale[1] * 2, center_position_xy[1] + img_shape_wh[1]),
)
crop_coord = (
0,
0,
min(img_shape_wh[0], x2 - x1),
min(y2 - y1, img_shape_wh[1]),
)
paste_coord = x1, y1, x2, y2
return paste_coord, crop_coord
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f"(img_scale={self.img_scale}, "
repr_str += f"center_ratio_range={self.center_ratio_range}, "
repr_str += f"pad_val={self.pad_val}, "
repr_str += f"prob={self.prob})"
return repr_str
@TRANSFORMS.register_module(force=True)
class SeqMixUp(BaseTransform):
"""MixUp data augmentation.
.. code:: text
mixup transform
+------------------------------+
| mixup image | |
| +--------|--------+ |
| | | | |
|---------------+ | |
| | | |
| | image | |
| | | |
| | | |
| |-----------------+ |
| pad |
+------------------------------+
The mixup transform steps are as follows:
1. Another random image is picked by dataset and embedded in
the top left patch(after padding and resizing)
2. The target of mixup transform is the weighted average of mixup
image and origin image.
Required Keys:
- img
- gt_bboxes (BaseBoxes[torch.float32]) (optional)
- gt_bboxes_labels (np.int64) (optional)
- gt_ignore_flags (bool) (optional)
- mix_results (List[dict])
Modified Keys:
- img
- img_shape
- gt_bboxes (optional)
- gt_bboxes_labels (optional)
- gt_ignore_flags (optional)
Args:
img_scale (Sequence[int]): Image output size after mixup pipeline.
The shape order should be (width, height). Defaults to (640, 640).
ratio_range (Sequence[float]): Scale ratio of mixup image.
Defaults to (0.5, 1.5).
flip_ratio (float): Horizontal flip ratio of mixup image.
Defaults to 0.5.
pad_val (int): Pad value. Defaults to 114.
max_iters (int): The maximum number of iterations. If the number of
iterations is greater than `max_iters`, but gt_bbox is still
empty, then the iteration is terminated. Defaults to 15.
bbox_clip_border (bool, optional): Whether to clip the objects outside
the border of the image. In some dataset like MOT17, the gt bboxes
are allowed to cross the border of images. Therefore, we don't
need to clip the gt bboxes in these cases. Defaults to True.
"""
def __init__(
self,
img_scale: Tuple[int, int] = (640, 640),
ratio_range: Tuple[float, float] = (0.5, 1.5),
flip_ratio: float = 0.5,
pad_val: float = 114.0,
max_iters: int = 15,
bbox_clip_border: bool = True,
) -> None:
assert isinstance(img_scale, tuple)
log_img_scale(img_scale, skip_square=True, shape_order="wh")
self.dynamic_scale = img_scale
self.ratio_range = ratio_range
self.flip_ratio = flip_ratio
self.pad_val = pad_val
self.max_iters = max_iters
self.bbox_clip_border = bbox_clip_border
@cache_randomness
def get_indexes(self, dataset: BaseDataset) -> int:
"""Call function to collect indexes.
Args:
dataset (:obj:`MultiImageMixDataset`): The dataset.
Returns:
list: indexes.
"""
for i in range(self.max_iters):
index = random.randint(0, len(dataset))
gt_bboxes_i = dataset[index]["gt_bboxes"]
if len(gt_bboxes_i) != 0:
break
return index
@autocast_box_type()
def transform(self, results: dict) -> dict:
"""MixUp transform function.
Args:
results (dict): Result dict.
Returns:
dict: Updated result dict.
"""
assert "mixup_mix_results" in results
assert (
len(results["mixup_mix_results"]) == 1
), "MixUp only support 2 images now !"
if results["mixup_mix_results"][0]["gt_bboxes"].shape[0] == 0:
# empty bbox
return results
retrieve_results = copy.deepcopy(results["mixup_mix_results"][0])
retrieve_img = retrieve_results["img"]
jit_factor = random.uniform(*self.ratio_range)
is_flip = random.uniform(0, 1) > self.flip_ratio
if len(retrieve_img.shape) == 3:
out_img = (
np.ones(
(self.dynamic_scale[1], self.dynamic_scale[0], 3),
dtype=retrieve_img.dtype,
)
* self.pad_val
)
else:
out_img = (
np.ones(self.dynamic_scale[::-1], dtype=retrieve_img.dtype)
* self.pad_val
)
# 1. keep_ratio resize
scale_ratio = min(
self.dynamic_scale[1] / retrieve_img.shape[0],
self.dynamic_scale[0] / retrieve_img.shape[1],
)
retrieve_img = mmcv.imresize(
retrieve_img,
(
int(retrieve_img.shape[1] * scale_ratio),
int(retrieve_img.shape[0] * scale_ratio),
),
)
# 2. paste
out_img[: retrieve_img.shape[0], : retrieve_img.shape[1]] = retrieve_img
# 3. scale jit
scale_ratio *= jit_factor
out_img = mmcv.imresize(
out_img,
(int(out_img.shape[1] * jit_factor), int(out_img.shape[0] * jit_factor)),
)
# 4. flip
if is_flip:
out_img = out_img[:, ::-1, :]
# 5. random crop
ori_img = results["img"]
origin_h, origin_w = out_img.shape[:2]
target_h, target_w = ori_img.shape[:2]
padded_img = (
np.ones((max(origin_h, target_h), max(origin_w, target_w), 3))
* self.pad_val
)
padded_img = padded_img.astype(np.uint8)
padded_img[:origin_h, :origin_w] = out_img
x_offset, y_offset = 0, 0
if padded_img.shape[0] > target_h:
y_offset = random.randint(0, padded_img.shape[0] - target_h)
if padded_img.shape[1] > target_w:
x_offset = random.randint(0, padded_img.shape[1] - target_w)
padded_cropped_img = padded_img[
y_offset : y_offset + target_h, x_offset : x_offset + target_w
]
# 6. adjust bbox
retrieve_gt_bboxes = retrieve_results["gt_bboxes"]
retrieve_gt_bboxes.rescale_([scale_ratio, scale_ratio])
if self.bbox_clip_border:
retrieve_gt_bboxes.clip_([origin_h, origin_w])
if is_flip:
retrieve_gt_bboxes.flip_([origin_h, origin_w], direction="horizontal")
# 7. filter
cp_retrieve_gt_bboxes = retrieve_gt_bboxes.clone()
cp_retrieve_gt_bboxes.translate_([-x_offset, -y_offset])
if self.bbox_clip_border:
cp_retrieve_gt_bboxes.clip_([target_h, target_w])
# 8. mix up
ori_img = ori_img.astype(np.float32)
mixup_img = 0.5 * ori_img + 0.5 * padded_cropped_img.astype(np.float32)
retrieve_gt_bboxes_labels = retrieve_results["gt_bboxes_labels"]
retrieve_gt_ignore_flags = retrieve_results["gt_ignore_flags"]
retrieve_gt_instances_ids = retrieve_results["gt_instances_ids"]
mixup_gt_bboxes = cp_retrieve_gt_bboxes.cat(
(results["gt_bboxes"], cp_retrieve_gt_bboxes), dim=0
)
mixup_gt_bboxes_labels = np.concatenate(
(results["gt_bboxes_labels"], retrieve_gt_bboxes_labels), axis=0
)
mixup_gt_ignore_flags = np.concatenate(
(results["gt_ignore_flags"], retrieve_gt_ignore_flags), axis=0
)
mixup_gt_instances_ids = np.concatenate(
(results["gt_instances_ids"], retrieve_gt_instances_ids), axis=0
)
# remove outside bbox
inside_inds = mixup_gt_bboxes.is_inside([target_h, target_w]).numpy()
mixup_gt_bboxes = mixup_gt_bboxes[inside_inds]
mixup_gt_bboxes_labels = mixup_gt_bboxes_labels[inside_inds]
mixup_gt_ignore_flags = mixup_gt_ignore_flags[inside_inds]
mixup_gt_instances_ids = mixup_gt_instances_ids[inside_inds]
results["img"] = mixup_img.astype(np.uint8)
results["img_shape"] = mixup_img.shape[:2]
results["gt_bboxes"] = mixup_gt_bboxes
results["gt_bboxes_labels"] = mixup_gt_bboxes_labels
results["gt_ignore_flags"] = mixup_gt_ignore_flags
results["gt_instances_ids"] = mixup_gt_instances_ids
assert len(results["gt_bboxes"]) == len(results["gt_instances_ids"])
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f"(dynamic_scale={self.dynamic_scale}, "
repr_str += f"ratio_range={self.ratio_range}, "
repr_str += f"flip_ratio={self.flip_ratio}, "
repr_str += f"pad_val={self.pad_val}, "
repr_str += f"max_iters={self.max_iters}, "
repr_str += f"bbox_clip_border={self.bbox_clip_border})"
return repr_str
@TRANSFORMS.register_module(force=True)
class FilterMatchAnnotations(BaseTransform):
"""Filter invalid annotations.
Required Keys:
- gt_bboxes (BaseBoxes[torch.float32]) (optional)
- gt_bboxes_labels (np.int64) (optional)
- gt_masks (BitmapMasks | PolygonMasks) (optional)
- gt_ignore_flags (bool) (optional)
Modified Keys:
- gt_bboxes (optional)
- gt_bboxes_labels (optional)
- gt_masks (optional)
- gt_ignore_flags (optional)
Args:
min_gt_bbox_wh (tuple[float]): Minimum width and height of ground truth
boxes. Default: (1., 1.)
min_gt_mask_area (int): Minimum foreground area of ground truth masks.
Default: 1
by_box (bool): Filter instances with bounding boxes not meeting the
min_gt_bbox_wh threshold. Default: True
by_mask (bool): Filter instances with masks not meeting
min_gt_mask_area threshold. Default: False
keep_empty (bool): Whether to return None when it
becomes an empty bbox after filtering. Defaults to True.
"""
def __init__(
self,
min_gt_bbox_wh: Tuple[int, int] = (1, 1),
min_gt_mask_area: int = 1,
by_box: bool = True,
by_mask: bool = False,
keep_empty: bool = True,
) -> None:
# TODO: add more filter options
assert by_box or by_mask
self.min_gt_bbox_wh = min_gt_bbox_wh
self.min_gt_mask_area = min_gt_mask_area
self.by_box = by_box
self.by_mask = by_mask
self.keep_empty = keep_empty
@autocast_box_type()
def transform(self, results: dict) -> Union[dict, None]:
"""Transform function to filter annotations.
Args:
results (dict): Result dict.
Returns:
dict: Updated result dict.
"""
assert "gt_bboxes" in results
gt_bboxes = results["gt_bboxes"]
if gt_bboxes.shape[0] == 0:
return results
tests = []
if self.by_box:
tests.append(
(
(gt_bboxes.widths > self.min_gt_bbox_wh[0])
& (gt_bboxes.heights > self.min_gt_bbox_wh[1])
).numpy()
)
if self.by_mask:
assert "gt_masks" in results
gt_masks = results["gt_masks"]
tests.append(gt_masks.areas >= self.min_gt_mask_area)
keep = tests[0]
for t in tests[1:]:
keep = keep & t
if not keep.any():
if self.keep_empty:
return None
keys = (
"gt_bboxes",
"gt_bboxes_labels",
"gt_masks",
"gt_instances_ids",
"gt_ignore_flags",
)
for key in keys:
if key in results:
results[key] = results[key][keep]
return results
def __repr__(self):
return (
self.__class__.__name__ + f"(min_gt_bbox_wh={self.min_gt_bbox_wh}, "
f"keep_empty={self.keep_empty})"
)
@TRANSFORMS.register_module(force=True)
class SeqCopyPaste(BaseTransform):
"""Simple Copy-Paste is a Strong Data Augmentation Method for Instance
Segmentation The simple copy-paste transform steps are as follows:
1. The destination image is already resized with aspect ratio kept,
cropped and padded.
2. Randomly select a source image, which is also already resized
with aspect ratio kept, cropped and padded in a similar way
as the destination image.
3. Randomly select some objects from the source image.
4. Paste these source objects to the destination image directly,
due to the source and destination image have the same size.
5. Update object masks of the destination image, for some origin objects
may be occluded.
6. Generate bboxes from the updated destination masks and
filter some objects which are totally occluded, and adjust bboxes
which are partly occluded.
7. Append selected source bboxes, masks, and labels.
Required Keys:
- img
- gt_bboxes (BaseBoxes[torch.float32]) (optional)
- gt_bboxes_labels (np.int64) (optional)
- gt_ignore_flags (bool) (optional)
- gt_masks (BitmapMasks) (optional)
Modified Keys:
- img
- gt_bboxes (optional)
- gt_bboxes_labels (optional)
- gt_ignore_flags (optional)
- gt_masks (optional)
Args:
max_num_pasted (int): The maximum number of pasted objects.
Defaults to 100.
bbox_occluded_thr (int): The threshold of occluded bbox.
Defaults to 10.
mask_occluded_thr (int): The threshold of occluded mask.
Defaults to 300.
selected (bool): Whether select objects or not. If select is False,
all objects of the source image will be pasted to the
destination image.
Defaults to True.
paste_by_box (bool): Whether use boxes as masks when masks are not
available.
Defaults to False.
"""
def __init__(
self,
max_num_pasted: int = 100,
bbox_occluded_thr: int = 10,
mask_occluded_thr: int = 300,
selected: bool = True,
paste_by_box: bool = False,
) -> None:
self.max_num_pasted = max_num_pasted
self.bbox_occluded_thr = bbox_occluded_thr
self.mask_occluded_thr = mask_occluded_thr
self.selected = selected
self.paste_by_box = paste_by_box
@cache_randomness
def get_indexes(self, dataset: BaseDataset) -> int:
"""Call function to collect indexes.s.
Args:
dataset (:obj:`MultiImageMixDataset`): The dataset.
Returns:
list: Indexes.
"""
return random.randint(0, len(dataset))
@autocast_box_type()
def transform(self, results: dict) -> dict:
"""Transform function to make a copy-paste of image.
Args:
results (dict): Result dict.
Returns:
dict: Result dict with copy-paste transformed.
"""
assert "copypaste_mix_results" in results
num_images = len(results["copypaste_mix_results"])
assert (
num_images == 1
), f"CopyPaste only supports processing 2 images, got {num_images}"
if self.selected:
selected_results = copy.deepcopy(
self._select_object(results["copypaste_mix_results"][0])
)
else:
selected_results = copy.deepcopy(results["copypaste_mix_results"][0])
return self._copy_paste(results, selected_results)
@cache_randomness
def _get_selected_inds(self, num_bboxes: int) -> np.ndarray:
max_num_pasted = min(num_bboxes + 1, self.max_num_pasted)
num_pasted = np.random.randint(0, max_num_pasted)
return np.random.choice(num_bboxes, size=num_pasted, replace=False)
def get_gt_masks(self, results: dict) -> BitmapMasks:
"""Get gt_masks originally or generated based on bboxes.
If gt_masks is not contained in results,
it will be generated based on gt_bboxes.
Args:
results (dict): Result dict.
Returns:
BitmapMasks: gt_masks, originally or generated based on bboxes.
"""
if results.get("gt_masks", None) is not None:
if self.paste_by_box:
warnings.warn(
"gt_masks is already contained in results, "
"so paste_by_box is disabled."
)
return results["gt_masks"]
else:
if not self.paste_by_box:
raise RuntimeError("results does not contain masks.")
return results["gt_bboxes"].create_masks(results["img"].shape[:2])
def _select_object(self, results: dict) -> dict:
"""Select some objects from the source results."""
bboxes = results["gt_bboxes"]
labels = results["gt_bboxes_labels"]
masks = self.get_gt_masks(results)
ignore_flags = results["gt_ignore_flags"]
gt_instances_ids = results.get("gt_instances_ids", None)
selected_inds = self._get_selected_inds(bboxes.shape[0])
selected_bboxes = bboxes[selected_inds]
selected_labels = labels[selected_inds]
selected_masks = masks[selected_inds]
selected_ignore_flags = ignore_flags[selected_inds]
selected_gt_instances_ids = gt_instances_ids[selected_inds]
results["gt_bboxes"] = selected_bboxes
results["gt_bboxes_labels"] = selected_labels
results["gt_masks"] = selected_masks
results["gt_ignore_flags"] = selected_ignore_flags
results["gt_instances_ids"] = selected_gt_instances_ids
return results
def _copy_paste(self, dst_results: dict, src_results: dict) -> dict:
"""CopyPaste transform function.
Args:
dst_results (dict): Result dict of the destination image.
src_results (dict): Result dict of the source image.
Returns:
dict: Updated result dict.
"""
dst_img = dst_results["img"]
dst_bboxes = dst_results["gt_bboxes"]
dst_labels = dst_results["gt_bboxes_labels"]
dst_masks = self.get_gt_masks(dst_results)
dst_ignore_flags = dst_results["gt_ignore_flags"]
dst_instances_ids = dst_results.get("gt_instances_ids", None)
src_img = src_results["img"]
src_bboxes = src_results["gt_bboxes"]
src_labels = src_results["gt_bboxes_labels"]
src_masks = src_results["gt_masks"]
src_ignore_flags = src_results["gt_ignore_flags"]
src_instances_ids = src_results.get("gt_instances_ids", None)
if len(src_bboxes) == 0:
return dst_results
# update masks and generate bboxes from updated masks
composed_mask = np.where(np.any(src_masks.masks, axis=0), 1, 0)
updated_dst_masks = self._get_updated_masks(dst_masks, composed_mask)
updated_dst_bboxes = updated_dst_masks.get_bboxes(type(dst_bboxes))
assert len(updated_dst_bboxes) == len(updated_dst_masks)
# filter totally occluded objects
l1_distance = (updated_dst_bboxes.tensor - dst_bboxes.tensor).abs()
bboxes_inds = (l1_distance <= self.bbox_occluded_thr).all(dim=-1).numpy()
masks_inds = updated_dst_masks.masks.sum(axis=(1, 2)) > self.mask_occluded_thr
valid_inds = bboxes_inds | masks_inds
# Paste source objects to destination image directly
img = (
dst_img * (1 - composed_mask[..., np.newaxis])
+ src_img * composed_mask[..., np.newaxis]
)
bboxes = src_bboxes.cat([updated_dst_bboxes[valid_inds], src_bboxes])
labels = np.concatenate([dst_labels[valid_inds], src_labels])
masks = np.concatenate([updated_dst_masks.masks[valid_inds], src_masks.masks])
ignore_flags = np.concatenate([dst_ignore_flags[valid_inds], src_ignore_flags])
instances_ids = np.concatenate(
[dst_instances_ids[valid_inds], src_instances_ids]
)
dst_results["img"] = img
dst_results["gt_bboxes"] = bboxes
dst_results["gt_bboxes_labels"] = labels
dst_results["gt_masks"] = BitmapMasks(masks, masks.shape[1], masks.shape[2])
dst_results["gt_ignore_flags"] = ignore_flags
dst_results["gt_instances_ids"] = instances_ids
return dst_results
def _get_updated_masks(
self, masks: BitmapMasks, composed_mask: np.ndarray
) -> BitmapMasks:
"""Update masks with composed mask."""
assert (
masks.masks.shape[-2:] == composed_mask.shape[-2:]
), "Cannot compare two arrays of different size"
masks.masks = np.where(composed_mask, 0, masks.masks)
return masks
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f"(max_num_pasted={self.max_num_pasted}, "
repr_str += f"bbox_occluded_thr={self.bbox_occluded_thr}, "
repr_str += f"mask_occluded_thr={self.mask_occluded_thr}, "
repr_str += f"selected={self.selected}), "
repr_str += f"paste_by_box={self.paste_by_box})"
return repr_str
@TRANSFORMS.register_module(force=True)
class SeqRandomAffine(BaseTransform):
"""Random affine transform data augmentation.
This operation randomly generates affine transform matrix which including
rotation, translation, shear and scaling transforms.
Required Keys:
- img
- gt_bboxes (BaseBoxes[torch.float32]) (optional)
- gt_bboxes_labels (np.int64) (optional)
- gt_ignore_flags (bool) (optional)
Modified Keys:
- img
- img_shape
- gt_bboxes (optional)
- gt_bboxes_labels (optional)
- gt_ignore_flags (optional)
Args:
max_rotate_degree (float): Maximum degrees of rotation transform.
Defaults to 10.
max_translate_ratio (float): Maximum ratio of translation.
Defaults to 0.1.
scaling_ratio_range (tuple[float]): Min and max ratio of
scaling transform. Defaults to (0.5, 1.5).
max_shear_degree (float): Maximum degrees of shear
transform. Defaults to 2.
border (tuple[int]): Distance from width and height sides of input
image to adjust output shape. Only used in mosaic dataset.
Defaults to (0, 0).
border_val (tuple[int]): Border padding values of 3 channels.
Defaults to (114, 114, 114).
bbox_clip_border (bool, optional): Whether to clip the objects outside
the border of the image. In some dataset like MOT17, the gt bboxes
are allowed to cross the border of images. Therefore, we don't
need to clip the gt bboxes in these cases. Defaults to True.
"""
def __init__(
self,
max_rotate_degree: float = 10.0,
max_translate_ratio: float = 0.1,
scaling_ratio_range: Tuple[float, float] = (0.5, 1.5),
max_shear_degree: float = 2.0,
border: Tuple[int, int] = (0, 0),
border_val: Tuple[int, int, int] = (114, 114, 114),
bbox_clip_border: bool = True,
) -> None:
assert 0 <= max_translate_ratio <= 1
assert scaling_ratio_range[0] <= scaling_ratio_range[1]
assert scaling_ratio_range[0] > 0
self.max_rotate_degree = max_rotate_degree
self.max_translate_ratio = max_translate_ratio
self.scaling_ratio_range = scaling_ratio_range
self.max_shear_degree = max_shear_degree
self.border = border
self.border_val = border_val
self.bbox_clip_border = bbox_clip_border
@cache_randomness
def _get_random_homography_matrix(self, height, width):
# Rotation
rotation_degree = random.uniform(
-self.max_rotate_degree, self.max_rotate_degree
)
rotation_matrix = self._get_rotation_matrix(rotation_degree)
# Scaling
scaling_ratio = random.uniform(
self.scaling_ratio_range[0], self.scaling_ratio_range[1]
)
scaling_matrix = self._get_scaling_matrix(scaling_ratio)
# Shear
x_degree = random.uniform(-self.max_shear_degree, self.max_shear_degree)
y_degree = random.uniform(-self.max_shear_degree, self.max_shear_degree)
shear_matrix = self._get_shear_matrix(x_degree, y_degree)
# Translation
trans_x = (
random.uniform(-self.max_translate_ratio, self.max_translate_ratio) * width
)
trans_y = (
random.uniform(-self.max_translate_ratio, self.max_translate_ratio) * height
)
translate_matrix = self._get_translation_matrix(trans_x, trans_y)
warp_matrix = translate_matrix @ shear_matrix @ rotation_matrix @ scaling_matrix
return warp_matrix
@autocast_box_type()
def transform(self, results: dict) -> dict:
img = results["img"]
height = img.shape[0] + self.border[1] * 2
width = img.shape[1] + self.border[0] * 2
warp_matrix = self._get_random_homography_matrix(height, width)
img = cv2.warpPerspective(
img, warp_matrix, dsize=(width, height), borderValue=self.border_val
)
results["img"] = img
results["img_shape"] = img.shape[:2]
bboxes = results["gt_bboxes"]
num_bboxes = len(bboxes)
if num_bboxes:
bboxes.project_(warp_matrix)
if self.bbox_clip_border:
bboxes.clip_([height, width])
# remove outside bbox
valid_index = bboxes.is_inside([height, width]).numpy()
results["gt_bboxes"] = bboxes[valid_index]
results["gt_bboxes_labels"] = results["gt_bboxes_labels"][valid_index]
results["gt_ignore_flags"] = results["gt_ignore_flags"][valid_index]
results["gt_instances_ids"] = results["gt_instances_ids"][valid_index]
assert len(results["gt_bboxes"]) == len(results["gt_instances_ids"])
if "gt_masks" in results:
raise NotImplementedError("RandomAffine only supports bbox.")
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f"(max_rotate_degree={self.max_rotate_degree}, "
repr_str += f"max_translate_ratio={self.max_translate_ratio}, "
repr_str += f"scaling_ratio_range={self.scaling_ratio_range}, "
repr_str += f"max_shear_degree={self.max_shear_degree}, "
repr_str += f"border={self.border}, "
repr_str += f"border_val={self.border_val}, "
repr_str += f"bbox_clip_border={self.bbox_clip_border})"
return repr_str
@staticmethod
def _get_rotation_matrix(rotate_degrees: float) -> np.ndarray:
radian = math.radians(rotate_degrees)
rotation_matrix = np.array(
[
[np.cos(radian), -np.sin(radian), 0.0],
[np.sin(radian), np.cos(radian), 0.0],
[0.0, 0.0, 1.0],
],
dtype=np.float32,
)
return rotation_matrix
@staticmethod
def _get_scaling_matrix(scale_ratio: float) -> np.ndarray:
scaling_matrix = np.array(
[[scale_ratio, 0.0, 0.0], [0.0, scale_ratio, 0.0], [0.0, 0.0, 1.0]],
dtype=np.float32,
)
return scaling_matrix
@staticmethod
def _get_shear_matrix(x_shear_degrees: float, y_shear_degrees: float) -> np.ndarray:
x_radian = math.radians(x_shear_degrees)
y_radian = math.radians(y_shear_degrees)
shear_matrix = np.array(
[[1, np.tan(x_radian), 0.0], [np.tan(y_radian), 1, 0.0], [0.0, 0.0, 1.0]],
dtype=np.float32,
)
return shear_matrix
@staticmethod
def _get_translation_matrix(x: float, y: float) -> np.ndarray:
translation_matrix = np.array(
[[1, 0.0, x], [0.0, 1, y], [0.0, 0.0, 1.0]], dtype=np.float32
)
return translation_matrix
|