Spaces:
Runtime error
Runtime error
File size: 7,741 Bytes
f1dd031 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import random
from typing import Iterable, List
import numpy as np
from mmdet.datasets.base_det_dataset import BaseDetDataset
from mmdet.datasets.base_video_dataset import BaseVideoDataset
from mmdet.registry import DATASETS
from mmengine.dataset import BaseDataset
from torch.utils.data import Dataset
from torch.utils.data.dataset import ConcatDataset as _ConcatDataset
@DATASETS.register_module()
class RandomSampleConcatDataset(_ConcatDataset):
def __init__(
self,
datasets: Iterable[Dataset],
sampling_probs: List[float],
fixed_length: int,
lazy_init: bool = False,
):
super(RandomSampleConcatDataset, self).__init__(datasets)
assert len(sampling_probs) == len(
datasets
), "Number of sampling probabilities must match the number of datasets"
assert sum(sampling_probs) == 1.0, "Sum of sampling probabilities must be 1.0"
self.datasets: List[BaseDataset] = []
for i, dataset in enumerate(datasets):
if isinstance(dataset, dict):
self.datasets.append(DATASETS.build(dataset))
elif isinstance(dataset, BaseDataset):
self.datasets.append(dataset)
else:
raise TypeError(
"elements in datasets sequence should be config or "
f"`BaseDataset` instance, but got {type(dataset)}"
)
self.sampling_probs = sampling_probs
self.fixed_length = fixed_length
self.metainfo = self.datasets[0].metainfo
total_datasets_length = sum([len(dataset) for dataset in self.datasets])
assert (
self.fixed_length <= total_datasets_length
), "the length of the concatenated dataset must be less than the sum of the lengths of the individual datasets"
self.flag = np.zeros(self.fixed_length, dtype=np.uint8)
self._fully_initialized = False
if not lazy_init:
self.full_init()
def full_init(self):
"""Loop to ``full_init`` each dataset."""
if self._fully_initialized:
return
for i, dataset in enumerate(self.datasets):
dataset.full_init()
self._ori_len = self.fixed_length
self._fully_initialized = True
def get_data_info(self, idx: int) -> dict:
"""Get annotation by index.
Args:
idx (int): Global index of ``ConcatDataset``.
Returns:
dict: The idx-th annotation of the datasets.
"""
return self.dataset.get_data_info(idx)
def __len__(self):
return self.fixed_length
def __getitem__(self, idx):
# Choose a dataset based on the sampling probabilities
chosen_dataset_idx = random.choices(
range(len(self.datasets)), weights=self.sampling_probs, k=1
)[0]
chosen_dataset = self.datasets[chosen_dataset_idx]
# Sample a random item from the chosen dataset
sample_idx = random.randrange(0, len(chosen_dataset))
return chosen_dataset[sample_idx]
@DATASETS.register_module()
class RandomSampleJointVideoConcatDataset(_ConcatDataset):
def __init__(
self,
datasets: Iterable[Dataset],
fixed_length: int,
lazy_init: bool = False,
video_sampling_probs: List[float] = [],
img_sampling_probs: List[float] = [],
*args,
**kwargs,
):
super(RandomSampleJointVideoConcatDataset, self).__init__(datasets)
self.datasets: List[BaseDataset] = []
for i, dataset in enumerate(datasets):
if isinstance(dataset, dict):
self.datasets.append(DATASETS.build(dataset))
elif isinstance(dataset, BaseDataset):
self.datasets.append(dataset)
else:
raise TypeError(
"elements in datasets sequence should be config or "
f"`BaseDataset` instance, but got {type(dataset)}"
)
self.video_dataset_idx = []
self.img_dataset_idx = []
self.datasets_indices_mapping = {}
for i, dataset in enumerate(self.datasets):
if isinstance(dataset, BaseVideoDataset):
self.video_dataset_idx.append(i)
num_videos = len(dataset)
video_indices = []
for video_ind in range(num_videos):
video_indices.extend(
[
(video_ind, frame_ind)
for frame_ind in range(dataset.get_len_per_video(video_ind))
]
)
self.datasets_indices_mapping[i] = video_indices
elif isinstance(dataset, BaseDetDataset):
self.img_dataset_idx.append(i)
img_indices = []
num_imgs = len(dataset)
for img_ind in range(num_imgs):
img_indices.extend([img_ind])
self.datasets_indices_mapping[i] = img_indices
else:
raise TypeError(
"elements in datasets sequence should be config or "
f"`BaseDataset` instance, but got {type(dataset)}"
)
self.fixed_length = fixed_length
self.metainfo = self.datasets[0].metainfo
total_datasets_length = sum(
[len(indices) for key, indices in self.datasets_indices_mapping.items()]
)
assert (
self.fixed_length <= total_datasets_length
), "the length of the concatenated dataset must be less than the sum of the lengths of the individual datasets"
self.flag = np.zeros(self.fixed_length, dtype=np.uint8)
self._fully_initialized = False
if not lazy_init:
self.full_init()
self.video_sampling_probs = video_sampling_probs
self.img_sampling_probs = img_sampling_probs
if self.video_sampling_probs:
assert (
sum(self.video_sampling_probs) == 1.0
), "Sum of video sampling probabilities must be 1.0"
if self.img_sampling_probs:
assert (
sum(self.img_sampling_probs) == 1.0
), "Sum of image sampling probabilities must be 1.0"
def full_init(self):
"""Loop to ``full_init`` each dataset."""
if self._fully_initialized:
return
for i, dataset in enumerate(self.datasets):
dataset.full_init()
self._ori_len = self.fixed_length
self._fully_initialized = True
def get_data_info(self, idx: int) -> dict:
"""Get annotation by index.
Args:
idx (int): Global index of ``ConcatDataset``.
Returns:
dict: The idx-th annotation of the datasets.
"""
return self.dataset.get_data_info(idx)
def __len__(self):
return self.fixed_length
def __getitem__(self, idx):
# idx ==0 means samples from video dataset, idx == 1 means samples from image dataset
# Choose a dataset based on the sampling probabilities
if idx == 0:
chosen_dataset_idx = random.choices(
self.video_dataset_idx, weights=self.video_sampling_probs, k=1
)[0]
elif idx == 1:
chosen_dataset_idx = random.choices(
self.img_dataset_idx, weights=self.img_sampling_probs, k=1
)[0]
chosen_dataset = self.datasets[chosen_dataset_idx]
# Sample a random item from the chosen dataset
sample_idx = random.choice(self.datasets_indices_mapping[chosen_dataset_idx])
return chosen_dataset[sample_idx]
|