Spaces:
Runtime error
Runtime error
File size: 13,974 Bytes
f1dd031 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
"""
Author: Siyuan Li
Licensed: Apache-2.0 License
"""
from typing import List, Tuple
import torch
import torch.nn.functional as F
from mmdet.models.trackers.base_tracker import BaseTracker
from mmdet.registry import MODELS
from mmdet.structures import TrackDataSample
from mmdet.structures.bbox import bbox_overlaps
from mmengine.structures import InstanceData
from torch import Tensor
@MODELS.register_module()
class MasaTaoTracker(BaseTracker):
"""Tracker for MASA on TAO benchmark.
Args:
init_score_thr (float): The cls_score threshold to
initialize a new tracklet. Defaults to 0.8.
obj_score_thr (float): The cls_score threshold to
update a tracked tracklet. Defaults to 0.5.
match_score_thr (float): The match threshold. Defaults to 0.5.
memo_tracklet_frames (int): The most frames in a tracklet memory.
Defaults to 10.
memo_momentum (float): The momentum value for embeds updating.
Defaults to 0.8.
distractor_score_thr (float): The score threshold to consider an object as a distractor.
Defaults to 0.5.
distractor_nms_thr (float): The NMS threshold for filtering out distractors.
Defaults to 0.3.
with_cats (bool): Whether to track with the same category.
Defaults to True.
match_metric (str): The match metric. Can be 'bisoftmax', 'softmax', or 'cosine'. Defaults to 'bisoftmax'.
max_distance (float): Maximum distance for considering matches. Defaults to -1.
fps (int): Frames per second of the input video. Used for calculating growth factor. Defaults to 1.
"""
def __init__(
self,
init_score_thr: float = 0.8,
obj_score_thr: float = 0.5,
match_score_thr: float = 0.5,
memo_tracklet_frames: int = 10,
memo_momentum: float = 0.8,
distractor_score_thr: float = 0.5,
distractor_nms_thr=0.3,
with_cats: bool = True,
max_distance: float = -1,
fps=1,
**kwargs
):
super().__init__(**kwargs)
assert 0 <= memo_momentum <= 1.0
assert memo_tracklet_frames >= 0
self.init_score_thr = init_score_thr
self.obj_score_thr = obj_score_thr
self.match_score_thr = match_score_thr
self.memo_tracklet_frames = memo_tracklet_frames
self.memo_momentum = memo_momentum
self.distractor_score_thr = distractor_score_thr
self.distractor_nms_thr = distractor_nms_thr
self.with_cats = with_cats
self.num_tracks = 0
self.tracks = dict()
self.backdrops = []
self.max_distance = max_distance # Maximum distance for considering matches
self.fps = fps
self.growth_factor = self.fps / 6 # Growth factor for the distance mask
self.distance_smoothing_factor = 100 / self.fps
def reset(self):
"""Reset the buffer of the tracker."""
self.num_tracks = 0
self.tracks = dict()
self.backdrops = []
def update(
self,
ids: Tensor,
bboxes: Tensor,
embeds: Tensor,
labels: Tensor,
scores: Tensor,
frame_id: int,
) -> None:
"""Tracking forward function.
Args:
ids (Tensor): of shape(N, ).
bboxes (Tensor): of shape (N, 5).
embeds (Tensor): of shape (N, 256).
labels (Tensor): of shape (N, ).
scores (Tensor): of shape (N, ).
frame_id (int): The id of current frame, 0-index.
"""
tracklet_inds = ids > -1
for id, bbox, embed, label, score in zip(
ids[tracklet_inds],
bboxes[tracklet_inds],
embeds[tracklet_inds],
labels[tracklet_inds],
scores[tracklet_inds],
):
id = int(id)
# update the tracked ones and initialize new tracks
if id in self.tracks.keys():
self.tracks[id]["bbox"] = bbox
self.tracks[id]["embed"] = (1 - self.memo_momentum) * self.tracks[id][
"embed"
] + self.memo_momentum * embed
self.tracks[id]["last_frame"] = frame_id
self.tracks[id]["label"] = label
self.tracks[id]["score"] = score
else:
self.tracks[id] = dict(
bbox=bbox,
embed=embed,
label=label,
score=score,
last_frame=frame_id,
)
# pop memo
invalid_ids = []
for k, v in self.tracks.items():
if frame_id - v["last_frame"] >= self.memo_tracklet_frames:
invalid_ids.append(k)
for invalid_id in invalid_ids:
self.tracks.pop(invalid_id)
@property
def memo(self) -> Tuple[Tensor, ...]:
"""Get tracks memory."""
memo_embeds = []
memo_ids = []
memo_bboxes = []
memo_labels = []
memo_frame_ids = []
# get tracks
for k, v in self.tracks.items():
memo_bboxes.append(v["bbox"][None, :])
memo_embeds.append(v["embed"][None, :])
memo_ids.append(k)
memo_labels.append(v["label"].view(1, 1))
memo_frame_ids.append(v["last_frame"])
memo_ids = torch.tensor(memo_ids, dtype=torch.long).view(1, -1)
memo_bboxes = torch.cat(memo_bboxes, dim=0)
memo_embeds = torch.cat(memo_embeds, dim=0)
memo_labels = torch.cat(memo_labels, dim=0).squeeze(1)
memo_frame_ids = torch.tensor(memo_frame_ids, dtype=torch.long).view(1, -1)
return (
memo_bboxes,
memo_labels,
memo_embeds,
memo_ids.squeeze(0),
memo_frame_ids.squeeze(0),
)
def compute_distance_mask(self, bboxes1, bboxes2, frame_ids1, frame_ids2):
"""Compute a mask based on the pairwise center distances and frame IDs with piecewise soft-weighting."""
centers1 = (bboxes1[:, :2] + bboxes1[:, 2:]) / 2.0
centers2 = (bboxes2[:, :2] + bboxes2[:, 2:]) / 2.0
distances = torch.cdist(centers1, centers2)
frame_id_diff = torch.abs(frame_ids1[:, None] - frame_ids2[None, :]).to(
distances.device
)
# Define a scaling factor for the distance based on frame difference (exponential growth)
scaling_factor = torch.exp(frame_id_diff.float() / self.growth_factor)
# Apply the scaling factor to max_distance
adaptive_max_distance = self.max_distance * scaling_factor
# Create a piecewise function for soft gating
soft_distance_mask = torch.where(
distances <= adaptive_max_distance,
torch.ones_like(distances),
torch.exp(
-(distances - adaptive_max_distance) / self.distance_smoothing_factor
),
)
return soft_distance_mask
def track(
self,
model: torch.nn.Module,
img: torch.Tensor,
feats: List[torch.Tensor],
data_sample: TrackDataSample,
rescale=True,
with_segm=False,
**kwargs
) -> InstanceData:
"""Tracking forward function.
Args:
model (nn.Module): MOT model.
img (Tensor): of shape (T, C, H, W) encoding input image.
Typically these should be mean centered and std scaled.
The T denotes the number of key images and usually is 1.
feats (list[Tensor]): Multi level feature maps of `img`.
data_sample (:obj:`TrackDataSample`): The data sample.
It includes information such as `pred_instances`.
rescale (bool, optional): If True, the bounding boxes should be
rescaled to fit the original scale of the image. Defaults to
True.
Returns:
:obj:`InstanceData`: Tracking results of the input images.
Each InstanceData usually contains ``bboxes``, ``labels``,
``scores`` and ``instances_id``.
"""
metainfo = data_sample.metainfo
bboxes = data_sample.pred_instances.bboxes
labels = data_sample.pred_instances.labels
scores = data_sample.pred_instances.scores
frame_id = metainfo.get("frame_id", -1)
# create pred_track_instances
pred_track_instances = InstanceData()
# return zero bboxes if there is no track targets
if bboxes.shape[0] == 0:
ids = torch.zeros_like(labels)
pred_track_instances = data_sample.pred_instances.clone()
pred_track_instances.instances_id = ids
pred_track_instances.mask_inds = torch.zeros_like(labels)
return pred_track_instances
# get track feats
rescaled_bboxes = bboxes.clone()
if rescale:
scale_factor = rescaled_bboxes.new_tensor(metainfo["scale_factor"]).repeat(
(1, 2)
)
rescaled_bboxes = rescaled_bboxes * scale_factor
track_feats = model.track_head.predict(feats, [rescaled_bboxes])
# sort according to the object_score
_, inds = scores.sort(descending=True)
bboxes = bboxes[inds]
scores = scores[inds]
labels = labels[inds]
embeds = track_feats[inds, :]
if with_segm:
mask_inds = torch.arange(bboxes.size(0)).to(embeds.device)
mask_inds = mask_inds[inds]
else:
mask_inds = []
bboxes, labels, scores, embeds, mask_inds = self.remove_distractor(
bboxes,
labels,
scores,
track_feats=embeds,
mask_inds=mask_inds,
nms="inter",
distractor_score_thr=self.distractor_score_thr,
distractor_nms_thr=self.distractor_nms_thr,
)
# init ids container
ids = torch.full((bboxes.size(0),), -1, dtype=torch.long)
# match if buffer is not empty
if bboxes.size(0) > 0 and not self.empty:
(
memo_bboxes,
memo_labels,
memo_embeds,
memo_ids,
memo_frame_ids,
) = self.memo
feats = torch.mm(embeds, memo_embeds.t())
d2t_scores = feats.softmax(dim=1)
t2d_scores = feats.softmax(dim=0)
match_scores_bisoftmax = (d2t_scores + t2d_scores) / 2
match_scores_cosine = torch.mm(
F.normalize(embeds, p=2, dim=1),
F.normalize(memo_embeds, p=2, dim=1).t(),
)
match_scores = (match_scores_bisoftmax + match_scores_cosine) / 2
if self.max_distance != -1:
# Compute the mask based on spatial proximity
current_frame_ids = torch.full(
(bboxes.size(0),), frame_id, dtype=torch.long
)
distance_mask = self.compute_distance_mask(
bboxes, memo_bboxes, current_frame_ids, memo_frame_ids
)
# Apply the mask to the match scores
match_scores = match_scores * distance_mask
# track according to match_scores
for i in range(bboxes.size(0)):
conf, memo_ind = torch.max(match_scores[i, :], dim=0)
id = memo_ids[memo_ind]
if conf > self.match_score_thr:
if id > -1:
# keep bboxes with high object score
# and remove background bboxes
if scores[i] > self.obj_score_thr:
ids[i] = id
match_scores[:i, memo_ind] = 0
match_scores[i + 1 :, memo_ind] = 0
# initialize new tracks
new_inds = (ids == -1) & (scores > self.init_score_thr).cpu()
num_news = new_inds.sum()
ids[new_inds] = torch.arange(
self.num_tracks, self.num_tracks + num_news, dtype=torch.long
)
self.num_tracks += num_news
self.update(ids, bboxes, embeds, labels, scores, frame_id)
tracklet_inds = ids > -1
# update pred_track_instances
pred_track_instances.bboxes = bboxes[tracklet_inds]
pred_track_instances.labels = labels[tracklet_inds]
pred_track_instances.scores = scores[tracklet_inds]
pred_track_instances.instances_id = ids[tracklet_inds]
if with_segm:
pred_track_instances.mask_inds = mask_inds[tracklet_inds]
return pred_track_instances
def remove_distractor(
self,
bboxes,
labels,
scores,
track_feats,
mask_inds=[],
distractor_score_thr=0.5,
distractor_nms_thr=0.3,
nms="inter",
):
# all objects is valid here
valid_inds = labels > -1
# nms
low_inds = torch.nonzero(scores < distractor_score_thr, as_tuple=False).squeeze(
1
)
if nms == "inter":
ious = bbox_overlaps(bboxes[low_inds, :], bboxes[:, :])
elif nms == "intra":
cat_same = labels[low_inds].view(-1, 1) == labels.view(1, -1)
ious = bbox_overlaps(bboxes[low_inds, :], bboxes)
ious *= cat_same.to(ious.device)
else:
raise NotImplementedError
for i, ind in enumerate(low_inds):
if (ious[i, :ind] > distractor_nms_thr).any():
valid_inds[ind] = False
bboxes = bboxes[valid_inds]
labels = labels[valid_inds]
scores = scores[valid_inds]
if track_feats is not None:
track_feats = track_feats[valid_inds]
if len(mask_inds) > 0:
mask_inds = mask_inds[valid_inds]
return bboxes, labels, scores, track_feats, mask_inds
|