Spaces:
Running
Running
File size: 6,083 Bytes
fe5070c be0cea3 fe5070c be0cea3 fe5070c 567ff97 fe5070c d71891a 9b179e0 d71891a 9b179e0 d71891a 567ff97 d71891a 567ff97 d71891a 9b179e0 d71891a fe5070c d71891a eaa86c1 d71891a fe5070c d71891a fe5070c d71891a fe5070c d71891a 00ff9a0 d71891a fe5070c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
#!/usr/bin/env python3
# svg_compare_gradio.py
# ------------------------------------------------------------
import spaces
import re, os, torch, cairosvg, lpips, clip, gradio as gr
from io import BytesIO
from pathlib import Path
from PIL import Image
from transformers import BitsAndBytesConfig, AutoTokenizer
import gradio as gr
# ---------- paths YOU may want to edit ----------------------
ADAPTER_DIR = "unsloth_trained_weights/checkpoint-1700" # LoRA ckpt
BASE_MODEL = "Qwen/Qwen2.5-Coder-7B-Instruct"
MAX_NEW = 512
DEVICE = "cuda" # if torch.cuda.is_available() else "cpu"
# ---------- utils -------------------------------------------
SVG_PAT = re.compile(r"<svg[^>]*>.*?</svg>", re.S | re.I)
def extract_svg(txt:str):
m = list(SVG_PAT.finditer(txt))
return m[-1].group(0) if m else None # last match β
def svg2pil(svg:str):
try:
png = cairosvg.svg2png(bytestring=svg.encode())
return Image.open(BytesIO(png)).convert("RGB")
except Exception:
return None
# ---------- backbone loaders (CLIP + LPIPS) -----------------
_CLIP,_PREP,_LP=None,None,None
@spaces.GPU
def _load_backbones():
global _CLIP,_PREP,_LP
if _CLIP is None:
_CLIP,_PREP = clip.load("ViT-L/14", device=DEVICE); _CLIP.eval()
if _LP is None:
_LP = lpips.LPIPS(net="vgg").to(DEVICE).eval()
@spaces.GPU
@torch.no_grad()
def fused_sim(a:Image.Image,b:Image.Image,Ξ±=.5):
_load_backbones()
ta,tb = _PREP(a).unsqueeze(0).to(DEVICE), _PREP(b).unsqueeze(0).to(DEVICE)
fa = _CLIP.encode_image(ta); fa/=fa.norm(dim=-1,keepdim=True)
fb = _CLIP.encode_image(tb); fb/=fb.norm(dim=-1,keepdim=True)
clip_sim=(([email protected]).item()+1)/2
lp_sim = 1 - _LP(ta,tb,normalize=True).item()
return Ξ±*clip_sim + (1-Ξ±)*lp_sim
bnb_cfg = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_use_double_quant=True)
# ---------- load models once at startup ---------------------
_base = None
# @spaces.GPU
# def load_models():
# from unsloth import FastLanguageModel
# global base, tok, lora
# if base is None:
# print("Loading BASE β¦")
# base, tok = FastLanguageModel.from_pretrained(
# BASE_MODEL, max_seq_length=2048,
# load_in_4bit=True, quantization_config=bnb_cfg, device_map="auto")
# tok.pad_token = tok.eos_token
# print("Loading LoRA β¦")
# lora, _ = FastLanguageModel.from_pretrained(
# ADAPTER_DIR, max_seq_length=2048,
# load_in_4bit=True, quantization_config=bnb_cfg, device_map="auto")
# print("β models loaded")
_base = _lora = _tok = None
_CLIP = _PREP = _LP = None
@spaces.GPU
def ensure_models():
"""Create base, lora, tok **once per worker**."""
from unsloth import FastLanguageModel
global _base, _lora, _tok
if _base is None:
_base, _tok = FastLanguageModel.from_pretrained(
BASE_MODEL, max_seq_length=2048,
quantization_config=bnb_cfg, device_map="auto")
_tok.pad_token = _tok.eos_token
_lora, _ = FastLanguageModel.from_pretrained(
ADAPTER_DIR, max_seq_length=2048,
quantization_config=bnb_cfg, device_map="auto")
return True
# @spaces.GPU
# def ensure_models():
# load_models()
# return True # small, pickle-able sentinel
def build_prompt(desc:str):
msgs=[{"role":"system","content":"You are an SVG illustrator."},
{"role":"user",
"content":f"ONLY reply with a valid, complete <svg>β¦</svg> file that depicts: {desc}"}]
return tok.apply_chat_template(msgs, tokenize=False, add_generation_prompt=True)
@spaces.GPU
@torch.no_grad()
def draw(model_flag, desc):
ensure_models()
model = _base if model_flag == "base" else _lora
prompt = _tok.apply_chat_template(
[{"role":"system","content":"You are an SVG illustrator."},
{"role":"user",
"content":f"ONLY reply with a valid, complete <svg>β¦</svg> file that depicts: {desc}"}],
tokenize=False, add_generation_prompt=True)
ids = _tok(prompt, return_tensors="pt").to(DEVICE)
out = model.generate(**ids, max_new_tokens=MAX_NEW,
do_sample=True, temperature=.7, top_p=.8)
svg = extract_svg(_tok.decode(out[0], skip_special_tokens=True))
img = svg2pil(svg) if svg else None
return img, svg or "(no SVG found)"
# ---------- gradio interface --------------------------------
#
def compare(desc):
img_b, svg_b = draw("base", desc)
img_l, svg_l = draw("lora", desc)
caption = "Thanks for trying our model π\nIf you don't see an image for the base or GRPO model that means it didn't generate a valid SVG!"
return img_b, img_l, caption, svg_b, svg_l
# def compare(desc):
# ensure_models()
# img_base, svg_base = draw(base, desc)
# img_lora, svg_lora = draw(lora, desc)
# # sim = (fused_sim(img_lora, img_base) if img_base and img_lora else float("nan"))
# caption = "Thanks for trying our model π\nIf you don't see an image for the base or GRPO model that means it didn't generate a valid SVG!"
# return img_base, img_lora, caption, svg_base, svg_lora
with gr.Blocks(css="body{background:#111;color:#eee}") as demo:
gr.Markdown("## ποΈ Qwen-2.5 SVG Generator β base vs GRPO-LoRA")
gr.Markdown(
"Type an image **description** (e.g. *a purple forest at dusk*). "
"Click **Generate** to see what the base model and your fine-tuned LoRA produce."
)
inp = gr.Textbox(label="Description", placeholder="a purple forest at dusk")
btn = gr.Button("Generate")
with gr.Row():
out_base = gr.Image(label="Base model", type="pil")
out_lora = gr.Image(label="LoRA-tuned model", type="pil")
sim_lbl = gr.Markdown()
with gr.Accordion("βοΈ Raw SVG code", open=False):
svg_base_box = gr.Textbox(label="Base SVG", lines=6)
svg_lora_box = gr.Textbox(label="LoRA SVG", lines=6)
btn.click(compare, inp, [out_base, out_lora, sim_lbl, svg_base_box, svg_lora_box])
demo.launch()
|