File size: 18,333 Bytes
fb6dc64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 |
import gradio as gr
from loadimg import load_img
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
import moviepy.editor as mp
from pydub import AudioSegment
from PIL import Image
import numpy as np
import os
import tempfile
import uuid
import time
from concurrent.futures import ThreadPoolExecutor
from PIL import Image, ImageSequence
import base64
import io
import numpy as np
import tempfile
from gradio_imageslider import ImageSlider
torch.set_float32_matmul_precision(["high", "highest"][0])
device = "cuda" if torch.cuda.is_available() else "cpu"
# Maximum image size
Image.MAX_IMAGE_PIXELS = None
# Load both BiRefNet models
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to(device)
birefnet_lite = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet_lite", trust_remote_code=True
)
birefnet_lite.to(device)
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
# Video processing
# Function to process a single frame
def process_frame(
frame, bg_type, bg, fast_mode, bg_frame_index, background_frames, color
):
try:
pil_image = Image.fromarray(frame)
if bg_type == "Color":
processed_image = process(pil_image, color, fast_mode)
elif bg_type == "Image":
processed_image = process(pil_image, bg, fast_mode)
elif bg_type == "Video":
background_frame = background_frames[
bg_frame_index
] # Access the correct background frame
bg_frame_index += 1
background_image = Image.fromarray(background_frame)
processed_image = process(pil_image, background_image, fast_mode)
else:
processed_image = (
pil_image # Default to original image if no background is selected
)
return np.array(processed_image), bg_frame_index
except Exception as e:
print(f"Error processing frame: {e}")
return frame, bg_frame_index
@spaces.GPU
def remove_bg_video(
vid,
bg_type="Color",
bg_image=None,
bg_video=None,
color="#00FF00",
fps=0,
video_handling="slow_down",
fast_mode=True,
max_workers=6,
):
try:
start_time = time.time() # Start the timer
video = mp.VideoFileClip(vid)
if fps == 0:
fps = video.fps
audio = video.audio
frames = list(video.iter_frames(fps=fps))
processed_frames = []
yield gr.update(visible=True), gr.update(
visible=False
), f"Processing started... Elapsed time: 0 seconds"
if bg_type == "Video":
background_video = mp.VideoFileClip(bg_video)
if background_video.duration < video.duration:
if video_handling == "slow_down":
background_video = background_video.fx(
mp.vfx.speedx, factor=video.duration / background_video.duration
)
else: # video_handling == "loop"
background_video = mp.concatenate_videoclips(
[background_video]
* int(video.duration / background_video.duration + 1)
)
background_frames = list(background_video.iter_frames(fps=fps))
else:
background_frames = None
bg_frame_index = 0 # Initialize background frame index
with ThreadPoolExecutor(max_workers=max_workers) as executor:
# Pass bg_frame_index as part of the function arguments
futures = [
executor.submit(
process_frame,
frames[i],
bg_type,
bg_image,
fast_mode,
bg_frame_index + i,
background_frames,
color,
)
for i in range(len(frames))
]
for i, future in enumerate(futures):
result, _ = future.result() # No need to update bg_frame_index here
processed_frames.append(result)
elapsed_time = time.time() - start_time
yield result, None, f"Processing frame {i+1}/{len(frames)}... Elapsed time: {elapsed_time:.2f} seconds"
processed_video = mp.ImageSequenceClip(processed_frames, fps=fps)
processed_video = processed_video.set_audio(audio)
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file:
temp_filepath = temp_file.name
processed_video.write_videofile(temp_filepath, codec="libx264")
elapsed_time = time.time() - start_time
yield gr.update(visible=False), gr.update(
visible=True
), f"Processing complete! Elapsed time: {elapsed_time:.2f} seconds"
yield processed_frames[
-1
], temp_filepath, f"Processing complete! Elapsed time: {elapsed_time:.2f} seconds"
except Exception as e:
print(f"Error: {e}")
elapsed_time = time.time() - start_time
yield gr.update(visible=False), gr.update(
visible=True
), f"Error processing video: {e}. Elapsed time: {elapsed_time:.2f} seconds"
yield None, f"Error processing video: {e}", f"Error processing video: {e}. Elapsed time: {elapsed_time:.2f} seconds"
def process(image, bg, fast_mode=False):
image_size = image.size
input_images = transform_image(image).unsqueeze(0).to(device)
model = birefnet_lite if fast_mode else birefnet
with torch.no_grad():
preds = model(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
if isinstance(bg, str) and bg.startswith("#"):
color_rgb = tuple(int(bg[i : i + 2], 16) for i in (1, 3, 5))
background = Image.new("RGBA", image_size, color_rgb + (255,))
elif isinstance(bg, Image.Image):
background = bg.convert("RGBA").resize(image_size)
else:
background = Image.open(bg).convert("RGBA").resize(image_size)
image = Image.composite(image, background, mask)
return image
# Image processing
# Function to remove background from an image
def remove_bg_fn(image):
im = load_img(image, output_type="pil")
im = im.convert("RGB")
origin = im.copy()
if im.format == "GIF":
frames = []
for frame in ImageSequence.Iterator(im):
frame = frame.convert("RGBA")
processed_frame = process_image(frame)
frames.append(processed_frame)
processed_image = frames[0]
processed_image.save(
io.BytesIO(),
format="GIF",
save_all=True,
append_images=frames[1:],
loop=0,
)
else:
processed_image = process_image(im)
return (processed_image, origin)
@spaces.GPU
def process_image(image):
image_size = image.size
input_images = transform_image(image).unsqueeze(0).to(device)
# Prediction
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
image.putalpha(mask)
return image
# Function to apply background to an image
@spaces.GPU
def apply_background(image, background):
if background.mode != "RGBA":
background = background.convert("RGBA")
image = image.convert("RGBA")
combined = Image.alpha_composite(background, image)
return combined
# Function to convert hex color to RGBA
def hex_to_rgba(hex_color):
hex_color = hex_color.lstrip("#")
lv = len(hex_color)
return tuple(int(hex_color[i : i + lv // 3], 16) for i in range(0, lv, lv // 3)) + (
255,
)
def apply_bg_image(image, background_file=None, background_color=None, bg_type="Color"):
try:
image_data = image.read()
input_image = Image.open(io.BytesIO(image_data))
origin = input_image.copy()
color_profile = input_image.info.get("icc_profile")
if background_file is not None:
background_image = Image.open(io.BytesIO(background_file.read()))
else:
background_image = None
if bg_type == "Color":
background_image = Image.new("RGBA", input_image.size, hex_to_rgba(background_color))
elif bg_type == "Image" and background_image is not None:
if background_image.size != input_image.size:
background_image = background_image.resize(input_image.size)
if input_image.format == "GIF":
frames = []
for frame in ImageSequence.Iterator(input_image):
frame = frame.convert("RGBA")
output_frame = apply_background(frame, background_image)
frames.append(output_frame)
output_image = io.BytesIO()
frames[0].save(
output_image,
format="GIF",
save_all=True,
append_images=frames[1:],
loop=0,
icc_profile=color_profile,
)
output_image_base64 = base64.b64encode(output_image.getvalue()).decode("utf-8")
else:
output_image = apply_background(input_image, background_image)
buffered = io.BytesIO()
output_image.save(buffered, format="PNG", optimize=True, icc_profile=color_profile)
output_image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
output_image_data = base64.b64decode(output_image_base64)
return (Image.open(io.BytesIO(output_image_data)), origin)
except Exception as e:
return str(e)
# Gradio interface
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
gr.Markdown("# Image and Video Background Remover & Changer\n\nRemove or apply background to images and videos.")
with gr.Tab("Remove Image Background"):
with gr.Row():
image_input = gr.Image(label="Upload Image", interactive=True)
slider = ImageSlider(label="Processed Image", type="pil")
remove_button = gr.Button("Remove Image Background", interactive=True)
examples = gr.Examples(
[
load_img(
"https://images.rawpixel.com/image_800/cHJpdmF0ZS9sci9pbWFnZXMvd2Vic2l0ZS8yMDIzLTA4L3Jhd3BpeGVsX29mZmljZV8yX3Bob3RvX29mX2FfbGlvbl9pc29sYXRlZF9vbl9jb2xvcl9iYWNrZ3JvdW5kXzJhNzgwMjM1LWRlYTgtNDMyOS04OWVjLTY3ZWMwNjcxZDhiMV8xLmpwZw.jpg",
output_type="pil",
)
],
inputs=image_input,
fn=remove_bg_fn,
outputs=slider,
cache_examples=True,
cache_mode="eager",
)
remove_button.click(remove_bg_fn, inputs=image_input, outputs=slider)
with gr.Tab("Apply Background to Image"):
with gr.Row():
image_input = gr.Image(label="Upload Image", interactive=True)
slider = ImageSlider(label="Processed Image", type="pil")
apply_button = gr.Button("Apply Background", interactive=True)
with gr.Row():
bg_type = gr.Radio(
["Color", "Image"],
label="Background Type",
value="Color",
interactive=True,
)
color_picker = gr.ColorPicker(
label="Background Color",
value="#00FF00",
visible=True,
interactive=True,
)
bg_image = gr.Image(
label="Background Image",
type="filepath",
visible=False,
interactive=True,
)
def update_visibility(bg_type):
if bg_type == "Color":
return (
gr.update(visible=True),
gr.update(visible=False),
)
elif bg_type == "Image":
return (
gr.update(visible=False),
gr.update(visible=True),
)
else:
return (
gr.update(visible=False),
gr.update(visible=False),
)
bg_type.change(
update_visibility,
inputs=bg_type,
outputs=[color_picker, bg_image],
)
examples = gr.Examples(
[
["https://pngimg.com/d/mario_PNG125.png", None, "#0cfa38", "Color"],
[
"https://pngimg.com/d/mario_PNG125.png",
"https://cdn.photoroom.com/v2/image-cache?path=gs://background-7ef44.appspot.com/backgrounds_v3/black/47_-_black.jpg",
None,
"Image",
],
],
inputs=[image_input, bg_image, color_picker, bg_type],
fn=apply_bg_image,
outputs=slider,
cache_examples=True,
cache_mode="eager",
)
apply_button.click(
apply_bg_image,
inputs=[image_input, bg_image, color_picker, bg_type],
outputs= slider,
)
with gr.Tab("Remove Video Background"):
with gr.Row():
in_video = gr.Video(label="Input Video", interactive=True)
stream_image = gr.Image(label="Streaming Output", visible=False)
out_video = gr.Video(label="Final Output Video")
submit_button = gr.Button("Change Background", interactive=True)
with gr.Row():
fps_slider = gr.Slider(
minimum=0,
maximum=60,
step=1,
value=0,
label="Output FPS (0 will inherit the original fps value)",
interactive=True,
)
bg_type = gr.Radio(
["Color", "Image", "Video"],
label="Background Type",
value="Color",
interactive=True,
)
color_picker = gr.ColorPicker(
label="Background Color",
value="#00FF00",
visible=True,
interactive=True,
)
bg_image = gr.Image(
label="Background Image",
type="filepath",
visible=False,
interactive=True,
)
bg_video = gr.Video(
label="Background Video", visible=False, interactive=True
)
with gr.Column(visible=False) as video_handling_options:
video_handling_radio = gr.Radio(
["slow_down", "loop"],
label="Video Handling",
value="slow_down",
interactive=True,
)
fast_mode_checkbox = gr.Checkbox(
label="Fast Mode (Use BiRefNet_lite)", value=True, interactive=True
)
max_workers_slider = gr.Slider(
minimum=1,
maximum=32,
step=1,
value=6,
label="Max Workers",
info="Determines how many frames to process in parallel",
interactive=True,
)
time_textbox = gr.Textbox(label="Time Elapsed", interactive=False)
def update_visibility(bg_type):
if bg_type == "Color":
return (
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
)
elif bg_type == "Image":
return (
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
)
elif bg_type == "Video":
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True),
)
else:
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
)
bg_type.change(
update_visibility,
inputs=bg_type,
outputs=[color_picker, bg_image, bg_video, video_handling_options],
)
examples = gr.Examples(
[
[
"https://www.w3schools.com/html/mov_bbb.mp4",
"Video",
None,
"https://www.w3schools.com/howto/rain.mp4",
],
[
"https://www.w3schools.com/html/mov_bbb.mp4",
"Image",
"https://cdn.photoroom.com/v2/image-cache?path=gs://background-7ef44.appspot.com/backgrounds_v3/black/47_-_black.jpg",
None,
],
["https://www.w3schools.com/html/mov_bbb.mp4", "Color", None, None],
],
inputs=[in_video, bg_type, bg_image, bg_video],
outputs=[stream_image, out_video, time_textbox],
fn=remove_bg_video,
cache_examples=True,
cache_mode="eager",
)
submit_button.click(
remove_bg_video,
inputs=[
in_video,
bg_type,
bg_image,
bg_video,
color_picker,
fps_slider,
video_handling_radio,
fast_mode_checkbox,
max_workers_slider,
],
outputs=[stream_image, out_video, time_textbox],
)
if __name__ == "__main__":
demo.launch(show_error=True) |