File size: 18,333 Bytes
fb6dc64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
import gradio as gr
from loadimg import load_img
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
import moviepy.editor as mp
from pydub import AudioSegment
from PIL import Image
import numpy as np
import os
import tempfile
import uuid
import time
from concurrent.futures import ThreadPoolExecutor
from PIL import Image, ImageSequence
import base64
import io
import numpy as np
import tempfile
from gradio_imageslider import ImageSlider

torch.set_float32_matmul_precision(["high", "highest"][0])
device = "cuda" if torch.cuda.is_available() else "cpu"

# Maximum image size
Image.MAX_IMAGE_PIXELS = None

# Load both BiRefNet models
birefnet = AutoModelForImageSegmentation.from_pretrained(
    "ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to(device)
birefnet_lite = AutoModelForImageSegmentation.from_pretrained(
    "ZhengPeng7/BiRefNet_lite", trust_remote_code=True
)
birefnet_lite.to(device)

transform_image = transforms.Compose(
    [
        transforms.Resize((1024, 1024)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ]
)

# Video processing


# Function to process a single frame
def process_frame(
    frame, bg_type, bg, fast_mode, bg_frame_index, background_frames, color
):
    try:
        pil_image = Image.fromarray(frame)
        if bg_type == "Color":
            processed_image = process(pil_image, color, fast_mode)
        elif bg_type == "Image":
            processed_image = process(pil_image, bg, fast_mode)
        elif bg_type == "Video":
            background_frame = background_frames[
                bg_frame_index
            ]  # Access the correct background frame
            bg_frame_index += 1
            background_image = Image.fromarray(background_frame)
            processed_image = process(pil_image, background_image, fast_mode)
        else:
            processed_image = (
                pil_image  # Default to original image if no background is selected
            )
        return np.array(processed_image), bg_frame_index
    except Exception as e:
        print(f"Error processing frame: {e}")
        return frame, bg_frame_index


@spaces.GPU
def remove_bg_video(
    vid,
    bg_type="Color",
    bg_image=None,
    bg_video=None,
    color="#00FF00",
    fps=0,
    video_handling="slow_down",
    fast_mode=True,
    max_workers=6,
):
    try:
        start_time = time.time()  # Start the timer
        video = mp.VideoFileClip(vid)
        if fps == 0:
            fps = video.fps

        audio = video.audio
        frames = list(video.iter_frames(fps=fps))

        processed_frames = []
        yield gr.update(visible=True), gr.update(
            visible=False
        ), f"Processing started... Elapsed time: 0 seconds"

        if bg_type == "Video":
            background_video = mp.VideoFileClip(bg_video)
            if background_video.duration < video.duration:
                if video_handling == "slow_down":
                    background_video = background_video.fx(
                        mp.vfx.speedx, factor=video.duration / background_video.duration
                    )
                else:  # video_handling == "loop"
                    background_video = mp.concatenate_videoclips(
                        [background_video]
                        * int(video.duration / background_video.duration + 1)
                    )
            background_frames = list(background_video.iter_frames(fps=fps))
        else:
            background_frames = None

        bg_frame_index = 0  # Initialize background frame index

        with ThreadPoolExecutor(max_workers=max_workers) as executor:
            # Pass bg_frame_index as part of the function arguments
            futures = [
                executor.submit(
                    process_frame,
                    frames[i],
                    bg_type,
                    bg_image,
                    fast_mode,
                    bg_frame_index + i,
                    background_frames,
                    color,
                )
                for i in range(len(frames))
            ]
            for i, future in enumerate(futures):
                result, _ = future.result()  #  No need to update bg_frame_index here
                processed_frames.append(result)
                elapsed_time = time.time() - start_time
                yield result, None, f"Processing frame {i+1}/{len(frames)}... Elapsed time: {elapsed_time:.2f} seconds"

        processed_video = mp.ImageSequenceClip(processed_frames, fps=fps)
        processed_video = processed_video.set_audio(audio)

        with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file:
            temp_filepath = temp_file.name
            processed_video.write_videofile(temp_filepath, codec="libx264")

        elapsed_time = time.time() - start_time
        yield gr.update(visible=False), gr.update(
            visible=True
        ), f"Processing complete! Elapsed time: {elapsed_time:.2f} seconds"
        yield processed_frames[
            -1
        ], temp_filepath, f"Processing complete! Elapsed time: {elapsed_time:.2f} seconds"

    except Exception as e:
        print(f"Error: {e}")
        elapsed_time = time.time() - start_time
        yield gr.update(visible=False), gr.update(
            visible=True
        ), f"Error processing video: {e}. Elapsed time: {elapsed_time:.2f} seconds"
        yield None, f"Error processing video: {e}", f"Error processing video: {e}. Elapsed time: {elapsed_time:.2f} seconds"


def process(image, bg, fast_mode=False):
    image_size = image.size
    input_images = transform_image(image).unsqueeze(0).to(device)
    model = birefnet_lite if fast_mode else birefnet

    with torch.no_grad():
        preds = model(input_images)[-1].sigmoid().cpu()
    pred = preds[0].squeeze()
    pred_pil = transforms.ToPILImage()(pred)
    mask = pred_pil.resize(image_size)

    if isinstance(bg, str) and bg.startswith("#"):
        color_rgb = tuple(int(bg[i : i + 2], 16) for i in (1, 3, 5))
        background = Image.new("RGBA", image_size, color_rgb + (255,))
    elif isinstance(bg, Image.Image):
        background = bg.convert("RGBA").resize(image_size)
    else:
        background = Image.open(bg).convert("RGBA").resize(image_size)

    image = Image.composite(image, background, mask)
    return image


# Image processing

# Function to remove background from an image
def remove_bg_fn(image):
    im = load_img(image, output_type="pil")
    im = im.convert("RGB")
    origin = im.copy()
    
    if im.format == "GIF":
        frames = []
        for frame in ImageSequence.Iterator(im):
            frame = frame.convert("RGBA")
            processed_frame = process_image(frame)
            frames.append(processed_frame)
        processed_image = frames[0]
        processed_image.save(
            io.BytesIO(),
            format="GIF",
            save_all=True,
            append_images=frames[1:],
            loop=0,
        )
    else:
        processed_image = process_image(im)
    
    return (processed_image, origin)

@spaces.GPU
def process_image(image):
    image_size = image.size
    input_images = transform_image(image).unsqueeze(0).to(device)
    
    # Prediction
    with torch.no_grad():
        preds = birefnet(input_images)[-1].sigmoid().cpu()
    pred = preds[0].squeeze()
    pred_pil = transforms.ToPILImage()(pred)
    mask = pred_pil.resize(image_size)
    image.putalpha(mask)
    return image




# Function to apply background to an image
@spaces.GPU
def apply_background(image, background):
    if background.mode != "RGBA":
        background = background.convert("RGBA")
    image = image.convert("RGBA")
    combined = Image.alpha_composite(background, image)
    return combined


# Function to convert hex color to RGBA
def hex_to_rgba(hex_color):
    hex_color = hex_color.lstrip("#")
    lv = len(hex_color)
    return tuple(int(hex_color[i : i + lv // 3], 16) for i in range(0, lv, lv // 3)) + (
        255,
    )


def apply_bg_image(image, background_file=None, background_color=None, bg_type="Color"):
    try:
        image_data = image.read()
        input_image = Image.open(io.BytesIO(image_data))
        origin = input_image.copy()
        
        color_profile = input_image.info.get("icc_profile")

        if background_file is not None:
            background_image = Image.open(io.BytesIO(background_file.read()))
        else:
            background_image = None

        if bg_type == "Color":
            background_image = Image.new("RGBA", input_image.size, hex_to_rgba(background_color))
        elif bg_type == "Image" and background_image is not None:
            if background_image.size != input_image.size:
                background_image = background_image.resize(input_image.size)

        if input_image.format == "GIF":
            frames = []
            for frame in ImageSequence.Iterator(input_image):
                frame = frame.convert("RGBA")
                output_frame = apply_background(frame, background_image)
                frames.append(output_frame)

            output_image = io.BytesIO()
            frames[0].save(
                output_image,
                format="GIF",
                save_all=True,
                append_images=frames[1:],
                loop=0,
                icc_profile=color_profile,
            )
            output_image_base64 = base64.b64encode(output_image.getvalue()).decode("utf-8")
        else:
            output_image = apply_background(input_image, background_image)
            buffered = io.BytesIO()
            output_image.save(buffered, format="PNG", optimize=True, icc_profile=color_profile)
            output_image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")

        output_image_data = base64.b64decode(output_image_base64)
        return (Image.open(io.BytesIO(output_image_data)), origin)
    except Exception as e:
        return str(e)



# Gradio interface
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
    gr.Markdown("# Image and Video Background Remover & Changer\n\nRemove or apply background to images and videos.")
    
    with gr.Tab("Remove Image Background"):
        with gr.Row():
            image_input = gr.Image(label="Upload Image", interactive=True)
            slider = ImageSlider(label="Processed Image", type="pil")
            
        remove_button = gr.Button("Remove Image Background", interactive=True)
        
        examples = gr.Examples(
            [
                load_img(
                    "https://images.rawpixel.com/image_800/cHJpdmF0ZS9sci9pbWFnZXMvd2Vic2l0ZS8yMDIzLTA4L3Jhd3BpeGVsX29mZmljZV8yX3Bob3RvX29mX2FfbGlvbl9pc29sYXRlZF9vbl9jb2xvcl9iYWNrZ3JvdW5kXzJhNzgwMjM1LWRlYTgtNDMyOS04OWVjLTY3ZWMwNjcxZDhiMV8xLmpwZw.jpg",
                    output_type="pil",
                )
            ],
            inputs=image_input,
            fn=remove_bg_fn,
            outputs=slider,
            cache_examples=True,
            cache_mode="eager",
        )
    
        remove_button.click(remove_bg_fn, inputs=image_input, outputs=slider)
        
    with gr.Tab("Apply Background to Image"):
        
        with gr.Row():
            image_input = gr.Image(label="Upload Image", interactive=True)
            slider = ImageSlider(label="Processed Image", type="pil")
            
        apply_button = gr.Button("Apply Background", interactive=True)
        
        with gr.Row():
            bg_type = gr.Radio(
                ["Color", "Image"],
                label="Background Type",
                value="Color",
                interactive=True,
            )
            color_picker = gr.ColorPicker(
                label="Background Color",
                value="#00FF00",
                visible=True,
                interactive=True,
            )
            bg_image = gr.Image(
                label="Background Image",
                type="filepath",
                visible=False,
                interactive=True,
            )
            
        def update_visibility(bg_type):
            if bg_type == "Color":
                return (
                    gr.update(visible=True),
                    gr.update(visible=False),
                )
            elif bg_type == "Image":
                return (
                    gr.update(visible=False),
                    gr.update(visible=True),
                )
            else:
                return (
                    gr.update(visible=False),
                    gr.update(visible=False),
                )
                
        bg_type.change(
            update_visibility,
            inputs=bg_type,
            outputs=[color_picker, bg_image],
        )
        
        examples = gr.Examples(
            [
                ["https://pngimg.com/d/mario_PNG125.png", None, "#0cfa38", "Color"],
                [
                    "https://pngimg.com/d/mario_PNG125.png",
                    "https://cdn.photoroom.com/v2/image-cache?path=gs://background-7ef44.appspot.com/backgrounds_v3/black/47_-_black.jpg",
                    None,
                    "Image",
                ],
            ],
            inputs=[image_input, bg_image, color_picker, bg_type],
            fn=apply_bg_image,
            outputs=slider,
            cache_examples=True,
            cache_mode="eager",
        )
        
        apply_button.click(
            apply_bg_image,
            inputs=[image_input, bg_image, color_picker, bg_type],
            outputs= slider,
        )
        
    
    with gr.Tab("Remove Video Background"):
        with gr.Row():
            in_video = gr.Video(label="Input Video", interactive=True)
            stream_image = gr.Image(label="Streaming Output", visible=False)
            out_video = gr.Video(label="Final Output Video")

        submit_button = gr.Button("Change Background", interactive=True)

        with gr.Row():
            fps_slider = gr.Slider(
                minimum=0,
                maximum=60,
                step=1,
                value=0,
                label="Output FPS (0 will inherit the original fps value)",
                interactive=True,
            )
            bg_type = gr.Radio(
                ["Color", "Image", "Video"],
                label="Background Type",
                value="Color",
                interactive=True,
            )
            color_picker = gr.ColorPicker(
                label="Background Color",
                value="#00FF00",
                visible=True,
                interactive=True,
            )
            bg_image = gr.Image(
                label="Background Image",
                type="filepath",
                visible=False,
                interactive=True,
            )
            bg_video = gr.Video(
                label="Background Video", visible=False, interactive=True
            )

            with gr.Column(visible=False) as video_handling_options:
                video_handling_radio = gr.Radio(
                    ["slow_down", "loop"],
                    label="Video Handling",
                    value="slow_down",
                    interactive=True,
                )

            fast_mode_checkbox = gr.Checkbox(
                label="Fast Mode (Use BiRefNet_lite)", value=True, interactive=True
            )
            max_workers_slider = gr.Slider(
                minimum=1,
                maximum=32,
                step=1,
                value=6,
                label="Max Workers",
                info="Determines how many frames to process in parallel",
                interactive=True,
            )

        time_textbox = gr.Textbox(label="Time Elapsed", interactive=False)

        def update_visibility(bg_type):
            if bg_type == "Color":
                return (
                    gr.update(visible=True),
                    gr.update(visible=False),
                    gr.update(visible=False),
                )
            elif bg_type == "Image":
                return (
                    gr.update(visible=False),
                    gr.update(visible=True),
                    gr.update(visible=False),
                    gr.update(visible=False),
                )
            elif bg_type == "Video":
                return (
                    gr.update(visible=False),
                    gr.update(visible=False),
                    gr.update(visible=True),
                )
            else:
                return (
                    gr.update(visible=False),
                    gr.update(visible=False),
                    gr.update(visible=False),
                )

        bg_type.change(
            update_visibility,
            inputs=bg_type,
            outputs=[color_picker, bg_image, bg_video, video_handling_options],
        )

        examples = gr.Examples(
            [
                [
                    "https://www.w3schools.com/html/mov_bbb.mp4",
                    "Video",
                    None,
                    "https://www.w3schools.com/howto/rain.mp4",
                ],
                [
                    "https://www.w3schools.com/html/mov_bbb.mp4",
                    "Image",
                    "https://cdn.photoroom.com/v2/image-cache?path=gs://background-7ef44.appspot.com/backgrounds_v3/black/47_-_black.jpg",
                    None,
                ],
                ["https://www.w3schools.com/html/mov_bbb.mp4", "Color", None, None],
            ],
            inputs=[in_video, bg_type, bg_image, bg_video],
            outputs=[stream_image, out_video, time_textbox],
            fn=remove_bg_video,
            cache_examples=True,
            cache_mode="eager",
        )

        submit_button.click(
            remove_bg_video,
            inputs=[
                in_video,
                bg_type,
                bg_image,
                bg_video,
                color_picker,
                fps_slider,
                video_handling_radio,
                fast_mode_checkbox,
                max_workers_slider,
            ],
            outputs=[stream_image, out_video, time_textbox],
        )

if __name__ == "__main__":
    demo.launch(show_error=True)