|
import gradio as gr |
|
from loadimg import load_img |
|
import spaces |
|
from transformers import AutoModelForImageSegmentation |
|
import torch |
|
from torchvision import transforms |
|
import moviepy.editor as mp |
|
from pydub import AudioSegment |
|
from PIL import Image |
|
import numpy as np |
|
import os |
|
import tempfile |
|
import uuid |
|
import time |
|
from concurrent.futures import ThreadPoolExecutor |
|
from PIL import Image, ImageSequence |
|
import base64 |
|
import io |
|
import numpy as np |
|
import tempfile |
|
from gradio_imageslider import ImageSlider |
|
|
|
torch.set_float32_matmul_precision(["high", "highest"][0]) |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
Image.MAX_IMAGE_PIXELS = None |
|
|
|
|
|
birefnet = AutoModelForImageSegmentation.from_pretrained( |
|
"ZhengPeng7/BiRefNet", trust_remote_code=True |
|
) |
|
birefnet.to(device) |
|
birefnet_lite = AutoModelForImageSegmentation.from_pretrained( |
|
"ZhengPeng7/BiRefNet_lite", trust_remote_code=True |
|
) |
|
birefnet_lite.to(device) |
|
|
|
transform_image = transforms.Compose( |
|
[ |
|
transforms.Resize((1024, 1024)), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
|
] |
|
) |
|
|
|
|
|
|
|
|
|
|
|
def process_frame( |
|
frame, bg_type, bg, fast_mode, bg_frame_index, background_frames, color |
|
): |
|
try: |
|
pil_image = Image.fromarray(frame) |
|
if bg_type == "Color": |
|
processed_image = process(pil_image, color, fast_mode) |
|
elif bg_type == "Image": |
|
processed_image = process(pil_image, bg, fast_mode) |
|
elif bg_type == "Video": |
|
background_frame = background_frames[ |
|
bg_frame_index |
|
] |
|
bg_frame_index += 1 |
|
background_image = Image.fromarray(background_frame) |
|
processed_image = process(pil_image, background_image, fast_mode) |
|
else: |
|
processed_image = ( |
|
pil_image |
|
) |
|
return np.array(processed_image), bg_frame_index |
|
except Exception as e: |
|
print(f"Error processing frame: {e}") |
|
return frame, bg_frame_index |
|
|
|
|
|
@spaces.GPU |
|
def remove_bg_video( |
|
vid, |
|
bg_type="Color", |
|
bg_image=None, |
|
bg_video=None, |
|
color="#00FF00", |
|
fps=0, |
|
video_handling="slow_down", |
|
fast_mode=True, |
|
max_workers=6, |
|
): |
|
try: |
|
start_time = time.time() |
|
video = mp.VideoFileClip(vid) |
|
if fps == 0: |
|
fps = video.fps |
|
|
|
audio = video.audio |
|
frames = list(video.iter_frames(fps=fps)) |
|
|
|
processed_frames = [] |
|
yield gr.update(visible=True), gr.update( |
|
visible=False |
|
), f"Processing started... Elapsed time: 0 seconds" |
|
|
|
if bg_type == "Video": |
|
background_video = mp.VideoFileClip(bg_video) |
|
if background_video.duration < video.duration: |
|
if video_handling == "slow_down": |
|
background_video = background_video.fx( |
|
mp.vfx.speedx, factor=video.duration / background_video.duration |
|
) |
|
else: |
|
background_video = mp.concatenate_videoclips( |
|
[background_video] |
|
* int(video.duration / background_video.duration + 1) |
|
) |
|
background_frames = list(background_video.iter_frames(fps=fps)) |
|
else: |
|
background_frames = None |
|
|
|
bg_frame_index = 0 |
|
|
|
with ThreadPoolExecutor(max_workers=max_workers) as executor: |
|
|
|
futures = [ |
|
executor.submit( |
|
process_frame, |
|
frames[i], |
|
bg_type, |
|
bg_image, |
|
fast_mode, |
|
bg_frame_index + i, |
|
background_frames, |
|
color, |
|
) |
|
for i in range(len(frames)) |
|
] |
|
for i, future in enumerate(futures): |
|
result, _ = future.result() |
|
processed_frames.append(result) |
|
elapsed_time = time.time() - start_time |
|
yield result, None, f"Processing frame {i+1}/{len(frames)}... Elapsed time: {elapsed_time:.2f} seconds" |
|
|
|
processed_video = mp.ImageSequenceClip(processed_frames, fps=fps) |
|
processed_video = processed_video.set_audio(audio) |
|
|
|
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file: |
|
temp_filepath = temp_file.name |
|
processed_video.write_videofile(temp_filepath, codec="libx264") |
|
|
|
elapsed_time = time.time() - start_time |
|
yield gr.update(visible=False), gr.update( |
|
visible=True |
|
), f"Processing complete! Elapsed time: {elapsed_time:.2f} seconds" |
|
yield processed_frames[ |
|
-1 |
|
], temp_filepath, f"Processing complete! Elapsed time: {elapsed_time:.2f} seconds" |
|
|
|
except Exception as e: |
|
print(f"Error: {e}") |
|
elapsed_time = time.time() - start_time |
|
yield gr.update(visible=False), gr.update( |
|
visible=True |
|
), f"Error processing video: {e}. Elapsed time: {elapsed_time:.2f} seconds" |
|
yield None, f"Error processing video: {e}", f"Error processing video: {e}. Elapsed time: {elapsed_time:.2f} seconds" |
|
|
|
|
|
def process(image, bg, fast_mode=False): |
|
image_size = image.size |
|
input_images = transform_image(image).unsqueeze(0).to(device) |
|
model = birefnet_lite if fast_mode else birefnet |
|
|
|
with torch.no_grad(): |
|
preds = model(input_images)[-1].sigmoid().cpu() |
|
pred = preds[0].squeeze() |
|
pred_pil = transforms.ToPILImage()(pred) |
|
mask = pred_pil.resize(image_size) |
|
|
|
if isinstance(bg, str) and bg.startswith("#"): |
|
color_rgb = tuple(int(bg[i : i + 2], 16) for i in (1, 3, 5)) |
|
background = Image.new("RGBA", image_size, color_rgb + (255,)) |
|
elif isinstance(bg, Image.Image): |
|
background = bg.convert("RGBA").resize(image_size) |
|
else: |
|
background = Image.open(bg).convert("RGBA").resize(image_size) |
|
|
|
image = Image.composite(image, background, mask) |
|
return image |
|
|
|
|
|
|
|
|
|
|
|
def remove_bg_fn(image): |
|
im = load_img(image, output_type="pil") |
|
im = im.convert("RGB") |
|
origin = im.copy() |
|
|
|
if im.format == "GIF": |
|
frames = [] |
|
for frame in ImageSequence.Iterator(im): |
|
frame = frame.convert("RGBA") |
|
processed_frame = process_image(frame) |
|
frames.append(processed_frame) |
|
processed_image = frames[0] |
|
processed_image.save( |
|
io.BytesIO(), |
|
format="GIF", |
|
save_all=True, |
|
append_images=frames[1:], |
|
loop=0, |
|
) |
|
else: |
|
processed_image = process_image(im) |
|
|
|
return (processed_image, origin) |
|
|
|
@spaces.GPU |
|
def process_image(image): |
|
image_size = image.size |
|
input_images = transform_image(image).unsqueeze(0).to(device) |
|
|
|
|
|
with torch.no_grad(): |
|
preds = birefnet(input_images)[-1].sigmoid().cpu() |
|
pred = preds[0].squeeze() |
|
pred_pil = transforms.ToPILImage()(pred) |
|
mask = pred_pil.resize(image_size) |
|
image.putalpha(mask) |
|
return image |
|
|
|
|
|
|
|
|
|
|
|
@spaces.GPU |
|
def apply_background(image, background): |
|
if background.mode != "RGBA": |
|
background = background.convert("RGBA") |
|
image = image.convert("RGBA") |
|
combined = Image.alpha_composite(background, image) |
|
return combined |
|
|
|
|
|
|
|
def hex_to_rgba(hex_color): |
|
hex_color = hex_color.lstrip("#") |
|
lv = len(hex_color) |
|
return tuple(int(hex_color[i : i + lv // 3], 16) for i in range(0, lv, lv // 3)) + ( |
|
255, |
|
) |
|
|
|
|
|
def apply_bg_image(image, background_file=None, background_color=None, bg_type="Color"): |
|
try: |
|
image_data = image.read() |
|
input_image = Image.open(io.BytesIO(image_data)) |
|
origin = input_image.copy() |
|
|
|
color_profile = input_image.info.get("icc_profile") |
|
|
|
if background_file is not None: |
|
background_image = Image.open(io.BytesIO(background_file.read())) |
|
else: |
|
background_image = None |
|
|
|
if bg_type == "Color": |
|
background_image = Image.new("RGBA", input_image.size, hex_to_rgba(background_color)) |
|
elif bg_type == "Image" and background_image is not None: |
|
if background_image.size != input_image.size: |
|
background_image = background_image.resize(input_image.size) |
|
|
|
if input_image.format == "GIF": |
|
frames = [] |
|
for frame in ImageSequence.Iterator(input_image): |
|
frame = frame.convert("RGBA") |
|
output_frame = apply_background(frame, background_image) |
|
frames.append(output_frame) |
|
|
|
output_image = io.BytesIO() |
|
frames[0].save( |
|
output_image, |
|
format="GIF", |
|
save_all=True, |
|
append_images=frames[1:], |
|
loop=0, |
|
icc_profile=color_profile, |
|
) |
|
output_image_base64 = base64.b64encode(output_image.getvalue()).decode("utf-8") |
|
else: |
|
output_image = apply_background(input_image, background_image) |
|
buffered = io.BytesIO() |
|
output_image.save(buffered, format="PNG", optimize=True, icc_profile=color_profile) |
|
output_image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8") |
|
|
|
output_image_data = base64.b64decode(output_image_base64) |
|
return (Image.open(io.BytesIO(output_image_data)), origin) |
|
except Exception as e: |
|
return str(e) |
|
|
|
|
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Ocean()) as demo: |
|
gr.Markdown("# Image and Video Background Remover & Changer\n\nRemove or apply background to images and videos.") |
|
with gr.Tab("Remove Image Background"): |
|
with gr.Row(): |
|
image_input = gr.Image(label="Upload Image", interactive=True) |
|
slider = ImageSlider(label="Processed Image", type="pil") |
|
|
|
remove_button = gr.Button("Remove Image Background", interactive=True) |
|
|
|
examples = gr.Examples( |
|
[ |
|
load_img( |
|
"https://images.rawpixel.com/image_800/cHJpdmF0ZS9sci9pbWFnZXMvd2Vic2l0ZS8yMDIzLTA4L3Jhd3BpeGVsX29mZmljZV8yX3Bob3RvX29mX2FfbGlvbl9pc29sYXRlZF9vbl9jb2xvcl9iYWNrZ3JvdW5kXzJhNzgwMjM1LWRlYTgtNDMyOS04OWVjLTY3ZWMwNjcxZDhiMV8xLmpwZw.jpg", |
|
output_type="pil", |
|
) |
|
], |
|
inputs=image_input, |
|
fn=remove_bg_fn, |
|
outputs=slider, |
|
cache_examples=True, |
|
cache_mode="eager", |
|
) |
|
|
|
remove_button.click(remove_bg_fn, inputs=image_input, outputs=slider) |
|
with gr.Tab("Apply Background to Image"): |
|
|
|
with gr.Row(): |
|
image_input = gr.Image(label="Upload Image", interactive=True) |
|
slider = ImageSlider(label="Processed Image", type="pil") |
|
|
|
apply_button = gr.Button("Apply Background", interactive=True) |
|
|
|
with gr.Row(): |
|
bg_type = gr.Radio( |
|
["Color", "Image"], |
|
label="Background Type", |
|
value="Color", |
|
interactive=True, |
|
) |
|
color_picker = gr.ColorPicker( |
|
label="Background Color", |
|
value="#00FF00", |
|
visible=True, |
|
interactive=True, |
|
) |
|
bg_image = gr.Image( |
|
label="Background Image", |
|
type="filepath", |
|
visible=False, |
|
interactive=True, |
|
) |
|
|
|
def update_visibility(bg_type): |
|
if bg_type == "Color": |
|
return ( |
|
gr.update(visible=True), |
|
gr.update(visible=False), |
|
) |
|
elif bg_type == "Image": |
|
return ( |
|
gr.update(visible=False), |
|
gr.update(visible=True), |
|
) |
|
else: |
|
return ( |
|
gr.update(visible=False), |
|
gr.update(visible=False), |
|
) |
|
|
|
bg_type.change( |
|
update_visibility, |
|
inputs=bg_type, |
|
outputs=[color_picker, bg_image], |
|
) |
|
|
|
examples = gr.Examples( |
|
[ |
|
["https://pngimg.com/d/mario_PNG125.png", None, "#0cfa38", "Color"], |
|
[ |
|
"https://pngimg.com/d/mario_PNG125.png", |
|
"https://cdn.photoroom.com/v2/image-cache?path=gs://background-7ef44.appspot.com/backgrounds_v3/black/47_-_black.jpg", |
|
None, |
|
"Image", |
|
], |
|
], |
|
inputs=[image_input, bg_image, color_picker, bg_type], |
|
fn=apply_bg_image, |
|
outputs=slider, |
|
cache_examples=True, |
|
cache_mode="eager", |
|
) |
|
|
|
apply_button.click( |
|
apply_bg_image, |
|
inputs=[image_input, bg_image, color_picker, bg_type], |
|
outputs= slider, |
|
) |
|
with gr.Tab("Remove Video Background"): |
|
with gr.Row(): |
|
in_video = gr.Video(label="Input Video", interactive=True) |
|
stream_image = gr.Image(label="Streaming Output", visible=False) |
|
out_video = gr.Video(label="Final Output Video") |
|
|
|
submit_button = gr.Button("Change Background", interactive=True) |
|
|
|
with gr.Row(): |
|
fps_slider = gr.Slider( |
|
minimum=0, |
|
maximum=60, |
|
step=1, |
|
value=0, |
|
label="Output FPS (0 will inherit the original fps value)", |
|
interactive=True, |
|
) |
|
bg_type = gr.Radio( |
|
["Color", "Image", "Video"], |
|
label="Background Type", |
|
value="Color", |
|
interactive=True, |
|
) |
|
color_picker = gr.ColorPicker( |
|
label="Background Color", |
|
value="#00FF00", |
|
visible=True, |
|
interactive=True, |
|
) |
|
bg_image = gr.Image( |
|
label="Background Image", |
|
type="filepath", |
|
visible=False, |
|
interactive=True, |
|
) |
|
bg_video = gr.Video( |
|
label="Background Video", visible=False, interactive=True |
|
) |
|
|
|
with gr.Column(visible=False) as video_handling_options: |
|
video_handling_radio = gr.Radio( |
|
["slow_down", "loop"], |
|
label="Video Handling", |
|
value="slow_down", |
|
interactive=True, |
|
) |
|
|
|
fast_mode_checkbox = gr.Checkbox( |
|
label="Fast Mode (Use BiRefNet_lite)", value=True, interactive=True |
|
) |
|
max_workers_slider = gr.Slider( |
|
minimum=1, |
|
maximum=32, |
|
step=1, |
|
value=6, |
|
label="Max Workers", |
|
info="Determines how many frames to process in parallel", |
|
interactive=True, |
|
) |
|
|
|
time_textbox = gr.Textbox(label="Time Elapsed", interactive=False) |
|
|
|
def update_visibility(bg_type): |
|
if bg_type == "Color": |
|
return ( |
|
gr.update(visible=True), |
|
gr.update(visible=False), |
|
gr.update(visible=False), |
|
) |
|
elif bg_type == "Image": |
|
return ( |
|
gr.update(visible=False), |
|
gr.update(visible=True), |
|
gr.update(visible=False), |
|
gr.update(visible=False), |
|
) |
|
elif bg_type == "Video": |
|
return ( |
|
gr.update(visible=False), |
|
gr.update(visible=False), |
|
gr.update(visible=True), |
|
) |
|
else: |
|
return ( |
|
gr.update(visible=False), |
|
gr.update(visible=False), |
|
gr.update(visible=False), |
|
) |
|
|
|
bg_type.change( |
|
update_visibility, |
|
inputs=bg_type, |
|
outputs=[color_picker, bg_image, bg_video, video_handling_options], |
|
) |
|
|
|
examples = gr.Examples( |
|
[ |
|
[ |
|
"https://www.w3schools.com/html/mov_bbb.mp4", |
|
"Video", |
|
None, |
|
"https://www.w3schools.com/howto/rain.mp4", |
|
], |
|
[ |
|
"https://www.w3schools.com/html/mov_bbb.mp4", |
|
"Image", |
|
"https://cdn.photoroom.com/v2/image-cache?path=gs://background-7ef44.appspot.com/backgrounds_v3/black/47_-_black.jpg", |
|
None, |
|
], |
|
["https://www.w3schools.com/html/mov_bbb.mp4", "Color", None, None], |
|
], |
|
inputs=[in_video, bg_type, bg_image, bg_video], |
|
outputs=[stream_image, out_video, time_textbox], |
|
fn=remove_bg_video, |
|
cache_examples=True, |
|
cache_mode="eager", |
|
) |
|
|
|
submit_button.click( |
|
remove_bg_video, |
|
inputs=[ |
|
in_video, |
|
bg_type, |
|
bg_image, |
|
bg_video, |
|
color_picker, |
|
fps_slider, |
|
video_handling_radio, |
|
fast_mode_checkbox, |
|
max_workers_slider, |
|
], |
|
outputs=[stream_image, out_video, time_textbox], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(show_error=True, ssr_mode=False) |