Spaces:
Running
on
Zero
Running
on
Zero
Upload 4 files
Browse files- app.py +115 -34
- env.py +5 -0
- modutils.py +63 -35
- requirements.txt +0 -1
app.py
CHANGED
|
@@ -22,6 +22,7 @@ from stablepy import (
|
|
| 22 |
SD15_TASKS,
|
| 23 |
SDXL_TASKS,
|
| 24 |
)
|
|
|
|
| 25 |
#import urllib.parse
|
| 26 |
|
| 27 |
PREPROCESSOR_CONTROLNET = {
|
|
@@ -393,6 +394,7 @@ class GuiSD:
|
|
| 393 |
retain_task_model_in_cache=False,
|
| 394 |
device="cpu",
|
| 395 |
)
|
|
|
|
| 396 |
|
| 397 |
def load_new_model(self, model_name, vae_model, task, progress=gr.Progress(track_tqdm=True)):
|
| 398 |
|
|
@@ -404,7 +406,7 @@ class GuiSD:
|
|
| 404 |
if vae_model:
|
| 405 |
vae_type = "SDXL" if "sdxl" in vae_model.lower() else "SD 1.5"
|
| 406 |
if model_type != vae_type:
|
| 407 |
-
gr.
|
| 408 |
|
| 409 |
self.model.device = torch.device("cpu")
|
| 410 |
dtype_model = torch.bfloat16 if model_type == "FLUX" else torch.float16
|
|
@@ -418,7 +420,7 @@ class GuiSD:
|
|
| 418 |
)
|
| 419 |
yield f"Model loaded: {model_name}"
|
| 420 |
|
| 421 |
-
|
| 422 |
@torch.inference_mode()
|
| 423 |
def generate_pipeline(
|
| 424 |
self,
|
|
@@ -531,7 +533,7 @@ class GuiSD:
|
|
| 531 |
vae_model = vae_model if vae_model != "None" else None
|
| 532 |
loras_list = [lora1, lora2, lora3, lora4, lora5]
|
| 533 |
vae_msg = f"VAE: {vae_model}" if vae_model else ""
|
| 534 |
-
msg_lora =
|
| 535 |
|
| 536 |
print("Config model:", model_name, vae_model, loras_list)
|
| 537 |
|
|
@@ -539,7 +541,7 @@ class GuiSD:
|
|
| 539 |
global lora_model_list
|
| 540 |
lora_model_list = get_lora_model_list()
|
| 541 |
lora1, lora_scale1, lora2, lora_scale2, lora3, lora_scale3, lora4, lora_scale4, lora5, lora_scale5 = \
|
| 542 |
-
set_prompt_loras(prompt, syntax_weights, lora1, lora_scale1, lora2, lora_scale2, lora3,
|
| 543 |
lora_scale3, lora4, lora_scale4, lora5, lora_scale5)
|
| 544 |
prompt, neg_prompt = insert_model_recom_prompt(prompt, neg_prompt, model_name)
|
| 545 |
## END MOD
|
|
@@ -703,17 +705,24 @@ class GuiSD:
|
|
| 703 |
|
| 704 |
#progress(0, desc="Preparation completed. Starting inference...")
|
| 705 |
|
| 706 |
-
info_state =
|
| 707 |
for img, seed, image_path, metadata in self.model(**pipe_params):
|
| 708 |
info_state += ">"
|
| 709 |
if image_path:
|
| 710 |
-
info_state = f"
|
| 711 |
if vae_msg:
|
| 712 |
info_state = info_state + "<br>" + vae_msg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 713 |
if msg_lora:
|
| 714 |
-
info_state
|
| 715 |
|
| 716 |
-
info_state = info_state + "<br>" + "GENERATION DATA:<br>" + "<br>-------<br>".join(metadata).replace("\n", "<br>")
|
| 717 |
|
| 718 |
download_links = "<br>".join(
|
| 719 |
[
|
|
@@ -721,7 +730,8 @@ class GuiSD:
|
|
| 721 |
for i, path in enumerate(image_path)
|
| 722 |
]
|
| 723 |
)
|
| 724 |
-
if save_generated_images:
|
|
|
|
| 725 |
|
| 726 |
img = save_images(img, metadata)
|
| 727 |
|
|
@@ -735,32 +745,90 @@ def update_task_options(model_name, task_name):
|
|
| 735 |
|
| 736 |
return gr.update(value=task_name, choices=new_choices)
|
| 737 |
|
| 738 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 739 |
|
| 740 |
-
#
|
| 741 |
-
|
| 742 |
-
|
| 743 |
-
|
| 744 |
-
|
| 745 |
-
|
| 746 |
-
|
| 747 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 748 |
|
| 749 |
-
|
| 750 |
-
|
| 751 |
-
|
| 752 |
-
# if status:
|
| 753 |
-
# gr.Info(f"LoRA loaded: {lora}")
|
| 754 |
-
# elif status is not None:
|
| 755 |
-
# gr.Warning(f"Failed to load LoRA: {lora}")
|
| 756 |
|
| 757 |
-
#
|
| 758 |
-
# # gr.Info(f"LoRAs in cache: {", ".join(str(x) for x in self.model.lora_memory if x is not None)}")
|
| 759 |
|
| 760 |
-
|
| 761 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 762 |
|
| 763 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 764 |
sd_gen = GuiSD()
|
| 765 |
|
| 766 |
## BEGIN MOD
|
|
@@ -869,6 +937,12 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
| 869 |
|
| 870 |
actual_task_info = gr.HTML()
|
| 871 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 872 |
with gr.Column(scale=1):
|
| 873 |
with gr.Accordion("Generation settings", open=False, visible=True) as menu_gen:
|
| 874 |
with gr.Row():
|
|
@@ -1015,9 +1089,13 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
| 1015 |
lora5_copy_gui = gr.Button(value="Copy example to prompt", visible=False)
|
| 1016 |
lora5_desc_gui = gr.Markdown(value="", visible=False)
|
| 1017 |
with gr.Accordion("From URL", open=True, visible=True):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1018 |
with gr.Row():
|
| 1019 |
search_civitai_query_lora = gr.Textbox(label="Query", placeholder="oomuro sakurako...", lines=1)
|
| 1020 |
-
|
| 1021 |
search_civitai_button_lora = gr.Button("Search on Civitai")
|
| 1022 |
search_civitai_desc_lora = gr.Markdown(value="", visible=False)
|
| 1023 |
search_civitai_result_lora = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False)
|
|
@@ -1269,7 +1347,7 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
| 1269 |
"Euler a",
|
| 1270 |
1024,
|
| 1271 |
1024,
|
| 1272 |
-
"
|
| 1273 |
],
|
| 1274 |
],
|
| 1275 |
fn=sd_gen.generate_pipeline,
|
|
@@ -1407,9 +1485,9 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
| 1407 |
lora4_copy_gui.click(apply_lora_prompt, [prompt_gui, lora4_info_gui], [prompt_gui], queue=False)
|
| 1408 |
lora5_copy_gui.click(apply_lora_prompt, [prompt_gui, lora5_info_gui], [prompt_gui], queue=False)
|
| 1409 |
gr.on(
|
| 1410 |
-
triggers=[search_civitai_button_lora.click, search_civitai_query_lora.submit],
|
| 1411 |
fn=search_civitai_lora,
|
| 1412 |
-
inputs=[search_civitai_query_lora, search_civitai_basemodel_lora],
|
| 1413 |
outputs=[search_civitai_result_lora, search_civitai_desc_lora, search_civitai_button_lora, search_civitai_query_lora],
|
| 1414 |
queue=True,
|
| 1415 |
scroll_to_output=True,
|
|
@@ -1463,7 +1541,7 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
| 1463 |
queue=True,
|
| 1464 |
show_progress="minimal",
|
| 1465 |
).success(
|
| 1466 |
-
fn=
|
| 1467 |
inputs=[
|
| 1468 |
prompt_gui,
|
| 1469 |
neg_prompt_gui,
|
|
@@ -1567,6 +1645,9 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
| 1567 |
mode_ip2,
|
| 1568 |
scale_ip2,
|
| 1569 |
pag_scale_gui,
|
|
|
|
|
|
|
|
|
|
| 1570 |
],
|
| 1571 |
outputs=[result_images, actual_task_info],
|
| 1572 |
queue=True,
|
|
|
|
| 22 |
SD15_TASKS,
|
| 23 |
SDXL_TASKS,
|
| 24 |
)
|
| 25 |
+
import time
|
| 26 |
#import urllib.parse
|
| 27 |
|
| 28 |
PREPROCESSOR_CONTROLNET = {
|
|
|
|
| 394 |
retain_task_model_in_cache=False,
|
| 395 |
device="cpu",
|
| 396 |
)
|
| 397 |
+
self.model.device = torch.device("cpu") #
|
| 398 |
|
| 399 |
def load_new_model(self, model_name, vae_model, task, progress=gr.Progress(track_tqdm=True)):
|
| 400 |
|
|
|
|
| 406 |
if vae_model:
|
| 407 |
vae_type = "SDXL" if "sdxl" in vae_model.lower() else "SD 1.5"
|
| 408 |
if model_type != vae_type:
|
| 409 |
+
gr.Warning(msg_inc_vae)
|
| 410 |
|
| 411 |
self.model.device = torch.device("cpu")
|
| 412 |
dtype_model = torch.bfloat16 if model_type == "FLUX" else torch.float16
|
|
|
|
| 420 |
)
|
| 421 |
yield f"Model loaded: {model_name}"
|
| 422 |
|
| 423 |
+
#@spaces.GPU
|
| 424 |
@torch.inference_mode()
|
| 425 |
def generate_pipeline(
|
| 426 |
self,
|
|
|
|
| 533 |
vae_model = vae_model if vae_model != "None" else None
|
| 534 |
loras_list = [lora1, lora2, lora3, lora4, lora5]
|
| 535 |
vae_msg = f"VAE: {vae_model}" if vae_model else ""
|
| 536 |
+
msg_lora = ""
|
| 537 |
|
| 538 |
print("Config model:", model_name, vae_model, loras_list)
|
| 539 |
|
|
|
|
| 541 |
global lora_model_list
|
| 542 |
lora_model_list = get_lora_model_list()
|
| 543 |
lora1, lora_scale1, lora2, lora_scale2, lora3, lora_scale3, lora4, lora_scale4, lora5, lora_scale5 = \
|
| 544 |
+
set_prompt_loras(prompt, syntax_weights, model_name, lora1, lora_scale1, lora2, lora_scale2, lora3,
|
| 545 |
lora_scale3, lora4, lora_scale4, lora5, lora_scale5)
|
| 546 |
prompt, neg_prompt = insert_model_recom_prompt(prompt, neg_prompt, model_name)
|
| 547 |
## END MOD
|
|
|
|
| 705 |
|
| 706 |
#progress(0, desc="Preparation completed. Starting inference...")
|
| 707 |
|
| 708 |
+
info_state = "PROCESSING "
|
| 709 |
for img, seed, image_path, metadata in self.model(**pipe_params):
|
| 710 |
info_state += ">"
|
| 711 |
if image_path:
|
| 712 |
+
info_state = f"COMPLETE. Seeds: {str(seed)}"
|
| 713 |
if vae_msg:
|
| 714 |
info_state = info_state + "<br>" + vae_msg
|
| 715 |
+
|
| 716 |
+
for status, lora in zip(self.model.lora_status, self.model.lora_memory):
|
| 717 |
+
if status:
|
| 718 |
+
msg_lora += f"<br>Loaded: {lora}"
|
| 719 |
+
elif status is not None:
|
| 720 |
+
msg_lora += f"<br>Error with: {lora}"
|
| 721 |
+
|
| 722 |
if msg_lora:
|
| 723 |
+
info_state += msg_lora
|
| 724 |
|
| 725 |
+
info_state = info_state + "<br>" + "GENERATION DATA:<br>" + "<br>-------<br>".join(metadata).replace("\n", "<br>")
|
| 726 |
|
| 727 |
download_links = "<br>".join(
|
| 728 |
[
|
|
|
|
| 730 |
for i, path in enumerate(image_path)
|
| 731 |
]
|
| 732 |
)
|
| 733 |
+
if save_generated_images:
|
| 734 |
+
info_state += f"<br>{download_links}"
|
| 735 |
|
| 736 |
img = save_images(img, metadata)
|
| 737 |
|
|
|
|
| 745 |
|
| 746 |
return gr.update(value=task_name, choices=new_choices)
|
| 747 |
|
| 748 |
+
def dynamic_gpu_duration(func, duration, *args):
|
| 749 |
+
|
| 750 |
+
@spaces.GPU(duration=duration)
|
| 751 |
+
def wrapped_func():
|
| 752 |
+
yield from func(*args)
|
| 753 |
+
|
| 754 |
+
return wrapped_func()
|
| 755 |
+
|
| 756 |
+
|
| 757 |
+
@spaces.GPU
|
| 758 |
+
def dummy_gpu():
|
| 759 |
+
return None
|
| 760 |
+
|
| 761 |
+
|
| 762 |
+
def sd_gen_generate_pipeline(*args):
|
| 763 |
+
|
| 764 |
+
gpu_duration_arg = int(args[-1]) if args[-1] else 59
|
| 765 |
+
verbose_arg = int(args[-2])
|
| 766 |
+
load_lora_cpu = args[-3]
|
| 767 |
+
generation_args = args[:-3]
|
| 768 |
+
lora_list = [
|
| 769 |
+
None if item == "None" or item == "" else item
|
| 770 |
+
for item in [args[7], args[9], args[11], args[13], args[15]]
|
| 771 |
+
]
|
| 772 |
+
lora_status = [None] * 5
|
| 773 |
+
|
| 774 |
+
msg_load_lora = "Updating LoRAs in GPU..."
|
| 775 |
+
if load_lora_cpu:
|
| 776 |
+
msg_load_lora = "Updating LoRAs in CPU (Slow but saves GPU usage)..."
|
| 777 |
+
|
| 778 |
+
if lora_list != sd_gen.model.lora_memory and lora_list != [None] * 5:
|
| 779 |
+
yield None, msg_load_lora
|
| 780 |
|
| 781 |
+
# Load lora in CPU
|
| 782 |
+
if load_lora_cpu:
|
| 783 |
+
lora_status = sd_gen.model.lora_merge(
|
| 784 |
+
lora_A=lora_list[0], lora_scale_A=args[8],
|
| 785 |
+
lora_B=lora_list[1], lora_scale_B=args[10],
|
| 786 |
+
lora_C=lora_list[2], lora_scale_C=args[12],
|
| 787 |
+
lora_D=lora_list[3], lora_scale_D=args[14],
|
| 788 |
+
lora_E=lora_list[4], lora_scale_E=args[16],
|
| 789 |
+
)
|
| 790 |
+
print(lora_status)
|
| 791 |
+
|
| 792 |
+
if verbose_arg:
|
| 793 |
+
for status, lora in zip(lora_status, lora_list):
|
| 794 |
+
if status:
|
| 795 |
+
gr.Info(f"LoRA loaded in CPU: {lora}")
|
| 796 |
+
elif status is not None:
|
| 797 |
+
gr.Warning(f"Failed to load LoRA: {lora}")
|
| 798 |
+
|
| 799 |
+
if lora_status == [None] * 5 and sd_gen.model.lora_memory != [None] * 5 and load_lora_cpu:
|
| 800 |
+
lora_cache_msg = ", ".join(
|
| 801 |
+
str(x) for x in sd_gen.model.lora_memory if x is not None
|
| 802 |
+
)
|
| 803 |
+
gr.Info(f"LoRAs in cache: {lora_cache_msg}")
|
| 804 |
|
| 805 |
+
msg_request = f"Requesting {gpu_duration_arg}s. of GPU time"
|
| 806 |
+
gr.Info(msg_request)
|
| 807 |
+
print(msg_request)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 808 |
|
| 809 |
+
# yield from sd_gen.generate_pipeline(*generation_args)
|
|
|
|
| 810 |
|
| 811 |
+
start_time = time.time()
|
| 812 |
|
| 813 |
+
yield from dynamic_gpu_duration(
|
| 814 |
+
sd_gen.generate_pipeline,
|
| 815 |
+
gpu_duration_arg,
|
| 816 |
+
*generation_args,
|
| 817 |
+
)
|
| 818 |
+
|
| 819 |
+
end_time = time.time()
|
| 820 |
|
| 821 |
+
if verbose_arg:
|
| 822 |
+
execution_time = end_time - start_time
|
| 823 |
+
msg_task_complete = (
|
| 824 |
+
f"GPU task complete in: {round(execution_time, 0) + 1} seconds"
|
| 825 |
+
)
|
| 826 |
+
gr.Info(msg_task_complete)
|
| 827 |
+
print(msg_task_complete)
|
| 828 |
+
|
| 829 |
+
|
| 830 |
+
dynamic_gpu_duration.zerogpu = True
|
| 831 |
+
sd_gen_generate_pipeline.zerogpu = True
|
| 832 |
sd_gen = GuiSD()
|
| 833 |
|
| 834 |
## BEGIN MOD
|
|
|
|
| 937 |
|
| 938 |
actual_task_info = gr.HTML()
|
| 939 |
|
| 940 |
+
with gr.Row(equal_height=False, variant="default"):
|
| 941 |
+
gpu_duration_gui = gr.Number(minimum=5, maximum=240, value=59, show_label=False, container=False, info="GPU time duration (seconds)")
|
| 942 |
+
with gr.Column():
|
| 943 |
+
verbose_info_gui = gr.Checkbox(value=False, container=False, label="Status info")
|
| 944 |
+
load_lora_cpu_gui = gr.Checkbox(value=False, container=False, label="Load LoRAs on CPU (Save GPU time)")
|
| 945 |
+
|
| 946 |
with gr.Column(scale=1):
|
| 947 |
with gr.Accordion("Generation settings", open=False, visible=True) as menu_gen:
|
| 948 |
with gr.Row():
|
|
|
|
| 1089 |
lora5_copy_gui = gr.Button(value="Copy example to prompt", visible=False)
|
| 1090 |
lora5_desc_gui = gr.Markdown(value="", visible=False)
|
| 1091 |
with gr.Accordion("From URL", open=True, visible=True):
|
| 1092 |
+
with gr.Row():
|
| 1093 |
+
search_civitai_basemodel_lora = gr.CheckboxGroup(label="Search LoRA for", choices=["Pony", "SD 1.5", "SDXL 1.0", "Flux.1 D", "Flux.1 S"], value=["Pony", "SDXL 1.0"])
|
| 1094 |
+
search_civitai_sort_lora = gr.Radio(label="Sort", choices=["Highest Rated", "Most Downloaded", "Newest"], value="Highest Rated")
|
| 1095 |
+
search_civitai_period_lora = gr.Radio(label="Period", choices=["AllTime", "Year", "Month", "Week", "Day"], value="AllTime")
|
| 1096 |
with gr.Row():
|
| 1097 |
search_civitai_query_lora = gr.Textbox(label="Query", placeholder="oomuro sakurako...", lines=1)
|
| 1098 |
+
search_civitai_tag_lora = gr.Textbox(label="Tag", lines=1)
|
| 1099 |
search_civitai_button_lora = gr.Button("Search on Civitai")
|
| 1100 |
search_civitai_desc_lora = gr.Markdown(value="", visible=False)
|
| 1101 |
search_civitai_result_lora = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False)
|
|
|
|
| 1347 |
"Euler a",
|
| 1348 |
1024,
|
| 1349 |
1024,
|
| 1350 |
+
"cagliostrolab/animagine-xl-3.1",
|
| 1351 |
],
|
| 1352 |
],
|
| 1353 |
fn=sd_gen.generate_pipeline,
|
|
|
|
| 1485 |
lora4_copy_gui.click(apply_lora_prompt, [prompt_gui, lora4_info_gui], [prompt_gui], queue=False)
|
| 1486 |
lora5_copy_gui.click(apply_lora_prompt, [prompt_gui, lora5_info_gui], [prompt_gui], queue=False)
|
| 1487 |
gr.on(
|
| 1488 |
+
triggers=[search_civitai_button_lora.click, search_civitai_query_lora.submit, search_civitai_tag_lora.submit],
|
| 1489 |
fn=search_civitai_lora,
|
| 1490 |
+
inputs=[search_civitai_query_lora, search_civitai_basemodel_lora, search_civitai_sort_lora, search_civitai_period_lora, search_civitai_tag_lora],
|
| 1491 |
outputs=[search_civitai_result_lora, search_civitai_desc_lora, search_civitai_button_lora, search_civitai_query_lora],
|
| 1492 |
queue=True,
|
| 1493 |
scroll_to_output=True,
|
|
|
|
| 1541 |
queue=True,
|
| 1542 |
show_progress="minimal",
|
| 1543 |
).success(
|
| 1544 |
+
fn=sd_gen_generate_pipeline,
|
| 1545 |
inputs=[
|
| 1546 |
prompt_gui,
|
| 1547 |
neg_prompt_gui,
|
|
|
|
| 1645 |
mode_ip2,
|
| 1646 |
scale_ip2,
|
| 1647 |
pag_scale_gui,
|
| 1648 |
+
load_lora_cpu_gui,
|
| 1649 |
+
verbose_info_gui,
|
| 1650 |
+
gpu_duration_gui,
|
| 1651 |
],
|
| 1652 |
outputs=[result_images, actual_task_info],
|
| 1653 |
queue=True,
|
env.py
CHANGED
|
@@ -72,6 +72,11 @@ load_diffusers_format_model = [
|
|
| 72 |
"Raelina/Raemu-Flux",
|
| 73 |
]
|
| 74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
# List all Models for specified user
|
| 76 |
HF_MODEL_USER_LIKES = ["votepurchase"] # sorted by number of likes
|
| 77 |
HF_MODEL_USER_EX = ["John6666"] # sorted by a special rule
|
|
|
|
| 72 |
"Raelina/Raemu-Flux",
|
| 73 |
]
|
| 74 |
|
| 75 |
+
DIFFUSERS_FORMAT_LORAS = [
|
| 76 |
+
"nerijs/animation2k-flux",
|
| 77 |
+
"XLabs-AI/flux-RealismLora",
|
| 78 |
+
]
|
| 79 |
+
|
| 80 |
# List all Models for specified user
|
| 81 |
HF_MODEL_USER_LIKES = ["votepurchase"] # sorted by number of likes
|
| 82 |
HF_MODEL_USER_EX = ["John6666"] # sorted by a special rule
|
modutils.py
CHANGED
|
@@ -4,13 +4,21 @@ import gradio as gr
|
|
| 4 |
from huggingface_hub import HfApi
|
| 5 |
import os
|
| 6 |
from pathlib import Path
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
from env import (HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2,
|
| 10 |
-
HF_MODEL_USER_EX, HF_MODEL_USER_LIKES,
|
| 11 |
directory_loras, hf_read_token, HF_TOKEN, CIVITAI_API_KEY)
|
| 12 |
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
def get_user_agent():
|
| 15 |
return 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:127.0) Gecko/20100101 Firefox/127.0'
|
| 16 |
|
|
@@ -27,6 +35,11 @@ def list_sub(a, b):
|
|
| 27 |
return [e for e in a if e not in b]
|
| 28 |
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
from translatepy import Translator
|
| 31 |
translator = Translator()
|
| 32 |
def translate_to_en(input: str):
|
|
@@ -64,7 +77,7 @@ def download_things(directory, url, hf_token="", civitai_api_key=""):
|
|
| 64 |
if hf_token:
|
| 65 |
os.system(f"aria2c --console-log-level=error --summary-interval=10 --header={user_header} -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
|
| 66 |
else:
|
| 67 |
-
os.system
|
| 68 |
elif "civitai.com" in url:
|
| 69 |
if "?" in url:
|
| 70 |
url = url.split("?")[0]
|
|
@@ -100,7 +113,6 @@ def safe_float(input):
|
|
| 100 |
return output
|
| 101 |
|
| 102 |
|
| 103 |
-
from PIL import Image
|
| 104 |
def save_images(images: list[Image.Image], metadatas: list[str]):
|
| 105 |
from PIL import PngImagePlugin
|
| 106 |
import uuid
|
|
@@ -245,10 +257,10 @@ model_id_list = get_model_id_list()
|
|
| 245 |
|
| 246 |
|
| 247 |
def get_t2i_model_info(repo_id: str):
|
| 248 |
-
api = HfApi()
|
| 249 |
try:
|
| 250 |
-
if
|
| 251 |
-
model = api.model_info(repo_id=repo_id)
|
| 252 |
except Exception as e:
|
| 253 |
print(f"Error: Failed to get {repo_id}'s info.")
|
| 254 |
print(e)
|
|
@@ -258,9 +270,8 @@ def get_t2i_model_info(repo_id: str):
|
|
| 258 |
info = []
|
| 259 |
url = f"https://huggingface.co/{repo_id}/"
|
| 260 |
if not 'diffusers' in tags: return ""
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
elif 'diffusers:StableDiffusionPipeline' in tags: info.append("SD1.5")
|
| 264 |
if model.card_data and model.card_data.tags:
|
| 265 |
info.extend(list_sub(model.card_data.tags, ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']))
|
| 266 |
info.append(f"DLs: {model.downloads}")
|
|
@@ -285,12 +296,8 @@ def get_tupled_model_list(model_list):
|
|
| 285 |
tags = model.tags
|
| 286 |
info = []
|
| 287 |
if not 'diffusers' in tags: continue
|
| 288 |
-
|
| 289 |
-
info.append(
|
| 290 |
-
if 'diffusers:StableDiffusionXLPipeline' in tags:
|
| 291 |
-
info.append("SDXL")
|
| 292 |
-
elif 'diffusers:StableDiffusionPipeline' in tags:
|
| 293 |
-
info.append("SD1.5")
|
| 294 |
if model.card_data and model.card_data.tags:
|
| 295 |
info.extend(list_sub(model.card_data.tags, ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']))
|
| 296 |
if "pony" in info:
|
|
@@ -374,7 +381,7 @@ def get_civitai_info(path):
|
|
| 374 |
|
| 375 |
|
| 376 |
def get_lora_model_list():
|
| 377 |
-
loras = list_uniq(get_private_lora_model_lists() + get_local_model_list(directory_loras))
|
| 378 |
loras.insert(0, "None")
|
| 379 |
loras.insert(0, "")
|
| 380 |
return loras
|
|
@@ -483,7 +490,7 @@ def download_my_lora(dl_urls: str, lora1: str, lora2: str, lora3: str, lora4: st
|
|
| 483 |
gr.update(value=lora4, choices=choices), gr.update(value=lora5, choices=choices)
|
| 484 |
|
| 485 |
|
| 486 |
-
def get_valid_lora_name(query: str):
|
| 487 |
path = "None"
|
| 488 |
if not query or query == "None": return "None"
|
| 489 |
if to_lora_key(query) in loras_dict.keys(): return query
|
|
@@ -497,7 +504,7 @@ def get_valid_lora_name(query: str):
|
|
| 497 |
dl_file = download_lora(query)
|
| 498 |
if dl_file and Path(dl_file).exists(): return dl_file
|
| 499 |
else:
|
| 500 |
-
dl_file = find_similar_lora(query)
|
| 501 |
if dl_file and Path(dl_file).exists(): return dl_file
|
| 502 |
return "None"
|
| 503 |
|
|
@@ -521,14 +528,14 @@ def get_valid_lora_wt(prompt: str, lora_path: str, lora_wt: float):
|
|
| 521 |
return wt
|
| 522 |
|
| 523 |
|
| 524 |
-
def set_prompt_loras(prompt, prompt_syntax, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt):
|
| 525 |
import re
|
| 526 |
if not "Classic" in str(prompt_syntax): return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt
|
| 527 |
-
lora1 = get_valid_lora_name(lora1)
|
| 528 |
-
lora2 = get_valid_lora_name(lora2)
|
| 529 |
-
lora3 = get_valid_lora_name(lora3)
|
| 530 |
-
lora4 = get_valid_lora_name(lora4)
|
| 531 |
-
lora5 = get_valid_lora_name(lora5)
|
| 532 |
if not "<lora" in prompt: return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt
|
| 533 |
lora1_wt = get_valid_lora_wt(prompt, lora1, lora1_wt)
|
| 534 |
lora2_wt = get_valid_lora_wt(prompt, lora2, lora2_wt)
|
|
@@ -790,16 +797,17 @@ def get_civitai_info(path):
|
|
| 790 |
return items
|
| 791 |
|
| 792 |
|
| 793 |
-
def search_lora_on_civitai(query: str, allow_model: list[str] = ["Pony", "SDXL 1.0"], limit: int = 100
|
|
|
|
| 794 |
import requests
|
| 795 |
from requests.adapters import HTTPAdapter
|
| 796 |
from urllib3.util import Retry
|
| 797 |
-
if not query: return None
|
| 798 |
user_agent = get_user_agent()
|
| 799 |
headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
|
| 800 |
base_url = 'https://civitai.com/api/v1/models'
|
| 801 |
-
params = {'
|
| 802 |
-
|
|
|
|
| 803 |
session = requests.Session()
|
| 804 |
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
|
| 805 |
session.mount("https://", HTTPAdapter(max_retries=retries))
|
|
@@ -828,9 +836,9 @@ def search_lora_on_civitai(query: str, allow_model: list[str] = ["Pony", "SDXL 1
|
|
| 828 |
return items
|
| 829 |
|
| 830 |
|
| 831 |
-
def search_civitai_lora(query, base_model):
|
| 832 |
global civitai_lora_last_results
|
| 833 |
-
items = search_lora_on_civitai(query, base_model)
|
| 834 |
if not items: return gr.update(choices=[("", "")], value="", visible=False),\
|
| 835 |
gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True)
|
| 836 |
civitai_lora_last_results = {}
|
|
@@ -856,7 +864,27 @@ def select_civitai_lora(search_result):
|
|
| 856 |
return gr.update(value=search_result), gr.update(value=md, visible=True)
|
| 857 |
|
| 858 |
|
| 859 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 860 |
from rapidfuzz.process import extractOne
|
| 861 |
from rapidfuzz.utils import default_process
|
| 862 |
query = to_lora_key(q)
|
|
@@ -879,7 +907,7 @@ def find_similar_lora(q: str):
|
|
| 879 |
print(f"Finding <lora:{query}:...> on Civitai...")
|
| 880 |
civitai_query = Path(query).stem if Path(query).is_file() else query
|
| 881 |
civitai_query = civitai_query.replace("_", " ").replace("-", " ")
|
| 882 |
-
base_model =
|
| 883 |
items = search_lora_on_civitai(civitai_query, base_model, 1)
|
| 884 |
if items:
|
| 885 |
item = items[0]
|
|
@@ -1241,11 +1269,11 @@ def set_textual_inversion_prompt(textual_inversion_gui, prompt_gui, neg_prompt_g
|
|
| 1241 |
|
| 1242 |
def get_model_pipeline(repo_id: str):
|
| 1243 |
from huggingface_hub import HfApi
|
| 1244 |
-
api = HfApi()
|
| 1245 |
default = "StableDiffusionPipeline"
|
| 1246 |
try:
|
| 1247 |
-
if
|
| 1248 |
-
model = api.model_info(repo_id=repo_id)
|
| 1249 |
except Exception:
|
| 1250 |
return default
|
| 1251 |
if model.private or model.gated: return default
|
|
|
|
| 4 |
from huggingface_hub import HfApi
|
| 5 |
import os
|
| 6 |
from pathlib import Path
|
| 7 |
+
from PIL import Image
|
| 8 |
|
| 9 |
|
| 10 |
from env import (HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2,
|
| 11 |
+
HF_MODEL_USER_EX, HF_MODEL_USER_LIKES, DIFFUSERS_FORMAT_LORAS,
|
| 12 |
directory_loras, hf_read_token, HF_TOKEN, CIVITAI_API_KEY)
|
| 13 |
|
| 14 |
|
| 15 |
+
MODEL_TYPE_DICT = {
|
| 16 |
+
"diffusers:StableDiffusionPipeline": "SD 1.5",
|
| 17 |
+
"diffusers:StableDiffusionXLPipeline": "SDXL",
|
| 18 |
+
"diffusers:FluxPipeline": "FLUX",
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
|
| 22 |
def get_user_agent():
|
| 23 |
return 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:127.0) Gecko/20100101 Firefox/127.0'
|
| 24 |
|
|
|
|
| 35 |
return [e for e in a if e not in b]
|
| 36 |
|
| 37 |
|
| 38 |
+
def is_repo_name(s):
|
| 39 |
+
import re
|
| 40 |
+
return re.fullmatch(r'^[^/]+?/[^/]+?$', s)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
from translatepy import Translator
|
| 44 |
translator = Translator()
|
| 45 |
def translate_to_en(input: str):
|
|
|
|
| 77 |
if hf_token:
|
| 78 |
os.system(f"aria2c --console-log-level=error --summary-interval=10 --header={user_header} -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
|
| 79 |
else:
|
| 80 |
+
os.system(f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
|
| 81 |
elif "civitai.com" in url:
|
| 82 |
if "?" in url:
|
| 83 |
url = url.split("?")[0]
|
|
|
|
| 113 |
return output
|
| 114 |
|
| 115 |
|
|
|
|
| 116 |
def save_images(images: list[Image.Image], metadatas: list[str]):
|
| 117 |
from PIL import PngImagePlugin
|
| 118 |
import uuid
|
|
|
|
| 257 |
|
| 258 |
|
| 259 |
def get_t2i_model_info(repo_id: str):
|
| 260 |
+
api = HfApi(token=HF_TOKEN)
|
| 261 |
try:
|
| 262 |
+
if not is_repo_name(repo_id): return ""
|
| 263 |
+
model = api.model_info(repo_id=repo_id, timeout=5.0)
|
| 264 |
except Exception as e:
|
| 265 |
print(f"Error: Failed to get {repo_id}'s info.")
|
| 266 |
print(e)
|
|
|
|
| 270 |
info = []
|
| 271 |
url = f"https://huggingface.co/{repo_id}/"
|
| 272 |
if not 'diffusers' in tags: return ""
|
| 273 |
+
for k, v in MODEL_TYPE_DICT.items():
|
| 274 |
+
if k in tags: info.append(v)
|
|
|
|
| 275 |
if model.card_data and model.card_data.tags:
|
| 276 |
info.extend(list_sub(model.card_data.tags, ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']))
|
| 277 |
info.append(f"DLs: {model.downloads}")
|
|
|
|
| 296 |
tags = model.tags
|
| 297 |
info = []
|
| 298 |
if not 'diffusers' in tags: continue
|
| 299 |
+
for k, v in MODEL_TYPE_DICT.items():
|
| 300 |
+
if k in tags: info.append(v)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 301 |
if model.card_data and model.card_data.tags:
|
| 302 |
info.extend(list_sub(model.card_data.tags, ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']))
|
| 303 |
if "pony" in info:
|
|
|
|
| 381 |
|
| 382 |
|
| 383 |
def get_lora_model_list():
|
| 384 |
+
loras = list_uniq(get_private_lora_model_lists() + get_local_model_list(directory_loras) + DIFFUSERS_FORMAT_LORAS)
|
| 385 |
loras.insert(0, "None")
|
| 386 |
loras.insert(0, "")
|
| 387 |
return loras
|
|
|
|
| 490 |
gr.update(value=lora4, choices=choices), gr.update(value=lora5, choices=choices)
|
| 491 |
|
| 492 |
|
| 493 |
+
def get_valid_lora_name(query: str, model_name: str):
|
| 494 |
path = "None"
|
| 495 |
if not query or query == "None": return "None"
|
| 496 |
if to_lora_key(query) in loras_dict.keys(): return query
|
|
|
|
| 504 |
dl_file = download_lora(query)
|
| 505 |
if dl_file and Path(dl_file).exists(): return dl_file
|
| 506 |
else:
|
| 507 |
+
dl_file = find_similar_lora(query, model_name)
|
| 508 |
if dl_file and Path(dl_file).exists(): return dl_file
|
| 509 |
return "None"
|
| 510 |
|
|
|
|
| 528 |
return wt
|
| 529 |
|
| 530 |
|
| 531 |
+
def set_prompt_loras(prompt, prompt_syntax, model_name, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt):
|
| 532 |
import re
|
| 533 |
if not "Classic" in str(prompt_syntax): return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt
|
| 534 |
+
lora1 = get_valid_lora_name(lora1, model_name)
|
| 535 |
+
lora2 = get_valid_lora_name(lora2, model_name)
|
| 536 |
+
lora3 = get_valid_lora_name(lora3, model_name)
|
| 537 |
+
lora4 = get_valid_lora_name(lora4, model_name)
|
| 538 |
+
lora5 = get_valid_lora_name(lora5, model_name)
|
| 539 |
if not "<lora" in prompt: return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt
|
| 540 |
lora1_wt = get_valid_lora_wt(prompt, lora1, lora1_wt)
|
| 541 |
lora2_wt = get_valid_lora_wt(prompt, lora2, lora2_wt)
|
|
|
|
| 797 |
return items
|
| 798 |
|
| 799 |
|
| 800 |
+
def search_lora_on_civitai(query: str, allow_model: list[str] = ["Pony", "SDXL 1.0"], limit: int = 100,
|
| 801 |
+
sort: str = "Highest Rated", period: str = "AllTime", tag: str = ""):
|
| 802 |
import requests
|
| 803 |
from requests.adapters import HTTPAdapter
|
| 804 |
from urllib3.util import Retry
|
|
|
|
| 805 |
user_agent = get_user_agent()
|
| 806 |
headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
|
| 807 |
base_url = 'https://civitai.com/api/v1/models'
|
| 808 |
+
params = {'types': ['LORA'], 'sort': sort, 'period': period, 'limit': limit, 'nsfw': 'true'}
|
| 809 |
+
if query: params["query"] = query
|
| 810 |
+
if tag: params["tag"] = tag
|
| 811 |
session = requests.Session()
|
| 812 |
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
|
| 813 |
session.mount("https://", HTTPAdapter(max_retries=retries))
|
|
|
|
| 836 |
return items
|
| 837 |
|
| 838 |
|
| 839 |
+
def search_civitai_lora(query, base_model, sort="Highest Rated", period="AllTime", tag=""):
|
| 840 |
global civitai_lora_last_results
|
| 841 |
+
items = search_lora_on_civitai(query, base_model, 100, sort, period, tag)
|
| 842 |
if not items: return gr.update(choices=[("", "")], value="", visible=False),\
|
| 843 |
gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True)
|
| 844 |
civitai_lora_last_results = {}
|
|
|
|
| 864 |
return gr.update(value=search_result), gr.update(value=md, visible=True)
|
| 865 |
|
| 866 |
|
| 867 |
+
LORA_BASE_MODEL_DICT = {
|
| 868 |
+
"diffusers:StableDiffusionPipeline": ["SD 1.5"],
|
| 869 |
+
"diffusers:StableDiffusionXLPipeline": ["Pony", "SDXL 1.0"],
|
| 870 |
+
"diffusers:FluxPipeline": ["Flux.1 D", "Flux.1 S"],
|
| 871 |
+
}
|
| 872 |
+
|
| 873 |
+
|
| 874 |
+
def get_lora_base_model(model_name: str):
|
| 875 |
+
api = HfApi(token=HF_TOKEN)
|
| 876 |
+
default = ["Pony", "SDXL 1.0"]
|
| 877 |
+
try:
|
| 878 |
+
model = api.model_info(repo_id=model_name, timeout=5.0)
|
| 879 |
+
tags = model.tags
|
| 880 |
+
for tag in tags:
|
| 881 |
+
if tag in LORA_BASE_MODEL_DICT.keys(): return LORA_BASE_MODEL_DICT.get(tag, default)
|
| 882 |
+
except Exception:
|
| 883 |
+
return default
|
| 884 |
+
return default
|
| 885 |
+
|
| 886 |
+
|
| 887 |
+
def find_similar_lora(q: str, model_name: str):
|
| 888 |
from rapidfuzz.process import extractOne
|
| 889 |
from rapidfuzz.utils import default_process
|
| 890 |
query = to_lora_key(q)
|
|
|
|
| 907 |
print(f"Finding <lora:{query}:...> on Civitai...")
|
| 908 |
civitai_query = Path(query).stem if Path(query).is_file() else query
|
| 909 |
civitai_query = civitai_query.replace("_", " ").replace("-", " ")
|
| 910 |
+
base_model = get_lora_base_model(model_name)
|
| 911 |
items = search_lora_on_civitai(civitai_query, base_model, 1)
|
| 912 |
if items:
|
| 913 |
item = items[0]
|
|
|
|
| 1269 |
|
| 1270 |
def get_model_pipeline(repo_id: str):
|
| 1271 |
from huggingface_hub import HfApi
|
| 1272 |
+
api = HfApi(token=HF_TOKEN)
|
| 1273 |
default = "StableDiffusionPipeline"
|
| 1274 |
try:
|
| 1275 |
+
if not is_repo_name(repo_id): return default
|
| 1276 |
+
model = api.model_info(repo_id=repo_id, timeout=5.0)
|
| 1277 |
except Exception:
|
| 1278 |
return default
|
| 1279 |
if model.private or model.gated: return default
|
requirements.txt
CHANGED
|
@@ -2,7 +2,6 @@ git+https://github.com/R3gm/stablepy.git@flux_beta
|
|
| 2 |
torch==2.2.0
|
| 3 |
gdown
|
| 4 |
opencv-python
|
| 5 |
-
yt-dlp
|
| 6 |
torchvision
|
| 7 |
accelerate
|
| 8 |
transformers
|
|
|
|
| 2 |
torch==2.2.0
|
| 3 |
gdown
|
| 4 |
opencv-python
|
|
|
|
| 5 |
torchvision
|
| 6 |
accelerate
|
| 7 |
transformers
|