File size: 10,629 Bytes
79f1dba
 
 
 
 
3e8f15d
79f1dba
 
1074823
79f1dba
e7360d0
79f1dba
 
 
 
 
 
3e8f15d
79f1dba
 
 
 
 
 
 
 
 
 
e7360d0
155d3fa
e7360d0
1074823
e7360d0
79f1dba
 
 
 
 
 
 
 
 
 
ef87b38
 
 
 
 
 
84673dd
 
1074823
155d3fa
 
 
 
 
 
79f1dba
1074823
 
 
 
 
155d3fa
3e8f15d
79f1dba
 
 
 
 
3849f04
79f1dba
 
3849f04
 
155d3fa
 
 
3849f04
 
79f1dba
 
1074823
79f1dba
 
 
 
155d3fa
1074823
79f1dba
 
 
 
 
 
 
 
 
 
 
 
62c4a4b
79f1dba
 
 
 
aad6757
3849f04
 
 
79f1dba
 
3849f04
0007d12
 
155d3fa
 
 
 
1074823
3169a1c
 
1074823
3169a1c
 
1074823
62c4a4b
ef87b38
 
0007d12
e7360d0
0007d12
 
 
 
 
e7360d0
aad6757
e7360d0
0007d12
 
 
 
 
3849f04
 
79f1dba
155d3fa
1074823
79f1dba
51223b4
79f1dba
0007d12
 
80da7a9
0007d12
 
ef87b38
3849f04
 
 
 
155d3fa
 
 
 
1074823
3169a1c
 
1074823
3169a1c
 
1074823
3849f04
 
 
 
155d3fa
3849f04
 
 
 
e7360d0
aad6757
e7360d0
3849f04
 
 
 
 
 
 
 
 
e7360d0
1074823
155d3fa
1074823
3849f04
51223b4
3849f04
 
79f1dba
3169a1c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import gradio as gr
from random import randint
from all_models import models
from externalmod import gr_Interface_load
import asyncio
import os
from threading import RLock
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.


def load_fn(models):
    global models_load
    models_load = {}
    for model in models:
        if model not in models_load.keys():
            try:
                m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
            except Exception as error:
                print(error)
                m = gr.Interface(lambda: None, ['text'], ['image'])
            models_load.update({model: m})


load_fn(models)


num_models = 6
max_images = 6
inference_timeout = 300
default_models = models[:num_models]
MAX_SEED = 2**32-1


def extend_choices(choices):
    return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA']


def update_imgbox(choices):
    choices_plus = extend_choices(choices[:num_models])
    return [gr.Image(None, label = m, visible = (m != 'NA')) for m in choices_plus]


def random_choices():
    import random
    random.seed()
    return random.choices(models, k = num_models)


# https://huggingface.co/docs/api-inference/detailed_parameters
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
async def infer(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1, timeout=inference_timeout):
    from pathlib import Path
    kwargs = {}
    if height is not None and height >= 256: kwargs["height"] = height
    if width is not None and width >= 256: kwargs["width"] = width
    if steps is not None and steps >= 1: kwargs["num_inference_steps"] = steps
    if cfg is not None and cfg > 0: cfg = kwargs["guidance_scale"] = cfg
    noise = ""
    if seed >= 0: kwargs["seed"] = seed
    else:
        rand = randint(1, 500)
        for i in range(rand):
            noise += " "
    task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn,
                               prompt=f'{prompt} {noise}', negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
    await asyncio.sleep(0)
    try:
        result = await asyncio.wait_for(task, timeout=timeout)
    except (Exception, asyncio.TimeoutError) as e:
        print(e)
        print(f"Task timed out: {model_str}")
        if not task.done(): task.cancel()
        result = None
    if task.done() and result is not None:
        with lock:
            png_path = "image.png"
            result.save(png_path)
            image = str(Path(png_path).resolve())
        return image
    return None


def gen_fn(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1):
    if model_str == 'NA':
        return None
    try:
        loop = asyncio.new_event_loop()
        result = loop.run_until_complete(infer(model_str, prompt, nprompt,
                                         height, width, steps, cfg, seed, inference_timeout))
    except (Exception, asyncio.CancelledError) as e:
        print(e)
        print(f"Task aborted: {model_str}")
        result = None
    finally:
        loop.close()
    return result


def add_gallery(image, model_str, gallery):
    if gallery is None: gallery = []
    with lock:
        if image is not None: gallery.insert(0, (image, model_str))
    return gallery


CSS="""

.gradio-container { max-width: 1200px; margin: 0 auto; !important; }

.output { width=112px; height=112px; !important; }

.gallery { width=100%; min_height=768px; !important; }

.guide { text-align: center; !important; }

"""

with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=CSS) as demo:
    with gr.Tab('The Dream'):
        with gr.Column(scale=2):
            with gr.Group():
                txt_input = gr.Textbox(label='Your prompt:', lines=4)
                neg_input = gr.Textbox(label='Negative prompt:', lines=1)
                with gr.Accordion("Advanced", open=False, visible=True):
                    with gr.Row():
                        width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                        height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                    with gr.Row():
                        steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
                        cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
                        seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
            with gr.Row():
                gen_button = gr.Button(f'Generate up to {int(num_models)} images in up to 3 minutes total', scale=3)
                random_button = gr.Button(f'Random {int(num_models)} 🎲', variant='secondary', scale=1)
                stop_button = gr.Button('Stop', variant='secondary', interactive=False, scale=1)
                gen_button.click(lambda: gr.update(interactive=True), None, stop_button)
            gr.Markdown("Scroll down to see more images and select models.", elem_classes="guide")

        with gr.Column(scale=1):
            with gr.Group():
                with gr.Row():
                    output = [gr.Image(label=m, show_download_button=True, elem_classes="output",
                              interactive=False, min_width=80, show_share_button=False, format="png",
                              visible=True) for m in default_models]
                    current_models = [gr.Textbox(m, visible=False) for m in default_models]

        with gr.Column(scale=2):
            gallery = gr.Gallery(label="Output", show_download_button=True, elem_classes="gallery",
                                interactive=False, show_share_button=True, container=True, format="png",
                                preview=True, object_fit="cover", columns=2, rows=2) 

        for m, o in zip(current_models, output):
            gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn,
                              inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o])
            o.change(add_gallery, [o, m, gallery], [gallery])
            stop_button.click(lambda: gr.update(interactive=False), None, stop_button, cancels=[gen_event])

        with gr.Column(scale=4):
            with gr.Accordion('Model selection'):
                model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
                model_choice.change(update_imgbox, model_choice, output)
                model_choice.change(extend_choices, model_choice, current_models)
                random_button.click(random_choices, None, model_choice)

    with gr.Tab('Single model'):
        with gr.Column(scale=2):
            model_choice2 = gr.Dropdown(models, label='Choose model', value=models[0])
            with gr.Group():
                txt_input2 = gr.Textbox(label='Your prompt:', lines=4)
                neg_input2 = gr.Textbox(label='Negative prompt:', lines=1)
                with gr.Accordion("Advanced", open=False, visible=True):
                    with gr.Row():
                        width2 = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                        height2 = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                    with gr.Row():
                        steps2 = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
                        cfg2 = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
                        seed2 = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
            num_images = gr.Slider(1, max_images, value=max_images, step=1, label='Number of images')
            with gr.Row():
                gen_button2 = gr.Button('Generate', scale=2)
                stop_button2 = gr.Button('Stop', variant='secondary', interactive=False, scale=1)
                gen_button2.click(lambda: gr.update(interactive=True), None, stop_button2)

        with gr.Column(scale=1):
            with gr.Group():
                with gr.Row():
                    output2 = [gr.Image(label='', show_download_button=True, elem_classes="output",
                               interactive=False, min_width=80, visible=True, format="png",
                               show_share_button=False, show_label=False) for _ in range(max_images)]

        with gr.Column(scale=2):
            gallery2 = gr.Gallery(label="Output", show_download_button=True, elem_classes="gallery",
                                interactive=False, show_share_button=True, container=True, format="png",
                                preview=True, object_fit="cover", columns=2, rows=2) 

        for i, o in enumerate(output2):
            img_i = gr.Number(i, visible = False)
            num_images.change(lambda i, n: gr.update(visible = (i < n)), [img_i, num_images], o)
            gen_event2 = gr.on(triggers=[gen_button2.click, txt_input2.submit],
                               fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5: gen_fn(m, t1, t2, n1, n2, n3, n4, n5) if (i < n) else None,
                               inputs=[img_i, num_images, model_choice2, txt_input2, neg_input2,
                                       height2, width2, steps2, cfg2, seed2], outputs=[o])
            o.change(add_gallery, [o, model_choice2, gallery2], [gallery2])
            stop_button2.click(lambda: gr.update(interactive=False), None, stop_button2, cancels=[gen_event2])

    gr.Markdown("Based on the [TestGen](https://huggingface.co/spaces/derwahnsinn/TestGen) Space by derwahnsinn, the [SpacIO](https://huggingface.co/spaces/RdnUser77/SpacIO_v1) Space by RdnUser77 and Omnibus's Maximum Multiplier!")

demo.queue(default_concurrency_limit=200, max_size=200)
demo.launch(show_api=False, max_threads=400)