John6666 commited on
Commit
2d3fb79
1 Parent(s): 87794e4

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +17 -20
  2. externalmod.py +27 -0
app.py CHANGED
@@ -1,7 +1,6 @@
1
  import gradio as gr
2
- from random import randint
3
  from all_models import models
4
- from externalmod import gr_Interface_load
5
  import asyncio
6
  import os
7
  from threading import RLock
@@ -49,21 +48,16 @@ def random_choices():
49
 
50
  # https://huggingface.co/docs/api-inference/detailed_parameters
51
  # https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
52
- async def infer(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1, timeout=inference_timeout):
53
- from pathlib import Path
54
  kwargs = {}
55
- if height is not None and height >= 256: kwargs["height"] = height
56
- if width is not None and width >= 256: kwargs["width"] = width
57
- if steps is not None and steps >= 1: kwargs["num_inference_steps"] = steps
58
- if cfg is not None and cfg > 0: cfg = kwargs["guidance_scale"] = cfg
59
- noise = ""
60
- if seed >= 0: kwargs["seed"] = seed
61
- else:
62
- rand = randint(1, 500)
63
- for i in range(rand):
64
- noise += " "
65
  task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn,
66
- prompt=f'{prompt} {noise}', negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
67
  await asyncio.sleep(0)
68
  try:
69
  result = await asyncio.wait_for(task, timeout=timeout)
@@ -72,22 +66,21 @@ async def infer(model_str, prompt, nprompt="", height=None, width=None, steps=No
72
  print(f"Task timed out: {model_str}")
73
  if not task.done(): task.cancel()
74
  result = None
75
- raise Exception(f"Task timed out: {model_str}")
76
  except Exception as e:
77
  print(e)
78
  if not task.done(): task.cancel()
79
  result = None
80
- raise Exception(e)
81
  if task.done() and result is not None and not isinstance(result, tuple):
82
  with lock:
83
  png_path = "image.png"
84
- result.save(png_path)
85
- image = str(Path(png_path).resolve())
86
  return image
87
  return None
88
 
89
 
90
- def gen_fn(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1):
91
  try:
92
  loop = asyncio.new_event_loop()
93
  result = loop.run_until_complete(infer(model_str, prompt, nprompt,
@@ -131,6 +124,8 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=CSS) as demo:
131
  steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
132
  cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
133
  seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
 
 
134
  with gr.Row():
135
  gen_button = gr.Button(f'Generate up to {int(num_models)} images in up to 3 minutes total', variant='primary', scale=3)
136
  random_button = gr.Button(f'Random {int(num_models)} 🎲', variant='secondary', scale=1)
@@ -179,6 +174,8 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=CSS) as demo:
179
  steps2 = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
180
  cfg2 = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
181
  seed2 = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
 
 
182
  num_images = gr.Slider(1, max_images, value=max_images, step=1, label='Number of images')
183
  with gr.Row():
184
  gen_button2 = gr.Button('Generate', variant='primary', scale=2)
 
1
  import gradio as gr
 
2
  from all_models import models
3
+ from externalmod import gr_Interface_load, save_image, randomize_seed
4
  import asyncio
5
  import os
6
  from threading import RLock
 
48
 
49
  # https://huggingface.co/docs/api-inference/detailed_parameters
50
  # https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
51
+ async def infer(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1, timeout=inference_timeout):
 
52
  kwargs = {}
53
+ if height > 0: kwargs["height"] = height
54
+ if width > 0: kwargs["width"] = width
55
+ if steps > 0: kwargs["num_inference_steps"] = steps
56
+ if cfg > 0: cfg = kwargs["guidance_scale"] = cfg
57
+ if seed == -1: kwargs["seed"] = randomize_seed()
58
+ else: kwargs["seed"] = seed
 
 
 
 
59
  task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn,
60
+ prompt=prompt, negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
61
  await asyncio.sleep(0)
62
  try:
63
  result = await asyncio.wait_for(task, timeout=timeout)
 
66
  print(f"Task timed out: {model_str}")
67
  if not task.done(): task.cancel()
68
  result = None
69
+ raise Exception(f"Task timed out: {model_str}") from e
70
  except Exception as e:
71
  print(e)
72
  if not task.done(): task.cancel()
73
  result = None
74
+ raise Exception() from e
75
  if task.done() and result is not None and not isinstance(result, tuple):
76
  with lock:
77
  png_path = "image.png"
78
+ image = save_image(result, png_path, model_str, prompt, nprompt, height, width, steps, cfg, seed)
 
79
  return image
80
  return None
81
 
82
 
83
+ def gen_fn(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1):
84
  try:
85
  loop = asyncio.new_event_loop()
86
  result = loop.run_until_complete(infer(model_str, prompt, nprompt,
 
124
  steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
125
  cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
126
  seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
127
+ seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
128
+ seed_rand.click(randomize_seed, None, [seed], queue=False)
129
  with gr.Row():
130
  gen_button = gr.Button(f'Generate up to {int(num_models)} images in up to 3 minutes total', variant='primary', scale=3)
131
  random_button = gr.Button(f'Random {int(num_models)} 🎲', variant='secondary', scale=1)
 
174
  steps2 = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
175
  cfg2 = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
176
  seed2 = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
177
+ seed_rand2 = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
178
+ seed_rand2.click(randomize_seed, None, [seed2], queue=False)
179
  num_images = gr.Slider(1, max_images, value=max_images, step=1, label='Number of images')
180
  with gr.Row():
181
  gen_button2 = gr.Button('Generate', variant='primary', scale=2)
externalmod.py CHANGED
@@ -583,3 +583,30 @@ def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="l
583
  models.append(model.id)
584
  if len(models) == limit: break
585
  return models
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
583
  models.append(model.id)
584
  if len(models) == limit: break
585
  return models
586
+
587
+
588
+ def save_image(image, savefile, modelname, prompt, nprompt, height=0, width=0, steps=0, cfg=0, seed=-1):
589
+ from PIL import Image, PngImagePlugin
590
+ import json
591
+ try:
592
+ metadata = {"prompt": prompt, "negative_prompt": nprompt, "Model": {"Model": modelname.split("/")[-1]}}
593
+ if steps > 0: metadata["num_inference_steps"] = steps
594
+ if cfg > 0: metadata["guidance_scale"] = cfg
595
+ if seed != -1: metadata["seed"] = seed
596
+ if width > 0 and height > 0: metadata["resolution"] = f"{width} x {height}"
597
+ metadata_str = json.dumps(metadata)
598
+ info = PngImagePlugin.PngInfo()
599
+ info.add_text("metadata", metadata_str)
600
+ image.save(savefile, "PNG", pnginfo=info)
601
+ return str(Path(savefile).resolve())
602
+ except Exception as e:
603
+ print(f"Failed to save image file: {e}")
604
+ raise Exception(f"Failed to save image file:") from e
605
+
606
+
607
+ def randomize_seed():
608
+ from random import seed, randint
609
+ MAX_SEED = 2**32-1
610
+ seed()
611
+ rseed = randint(0, MAX_SEED)
612
+ return rseed