Spaces:
Running
Running
File size: 11,608 Bytes
2e857d1 8300fda 2e857d1 8300fda 2e857d1 8300fda 2e857d1 8300fda 2e857d1 8300fda 2e857d1 8300fda 2e857d1 8300fda 2e857d1 8300fda 92ca851 2e857d1 8300fda 2e857d1 8300fda 97cf4f0 2e857d1 8300fda 2e857d1 8300fda 97cf4f0 2e857d1 8300fda 2e857d1 8300fda 97cf4f0 2e857d1 8300fda 2e857d1 8300fda 92ca851 2e857d1 8300fda 97cf4f0 2e857d1 92ca851 8300fda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import gradio as gr
from random import randint
from all_models import models
from externalmod import gr_Interface_load
import asyncio
import os
from threading import RLock
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
def load_fn(models):
global models_load
models_load = {}
for model in models:
if model not in models_load.keys():
try:
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
except Exception as error:
print(error)
m = gr.Interface(lambda: None, ['text'], ['image'])
models_load.update({model: m})
load_fn(models)
num_models = 1
max_imagesone = 1
max_images = 6
default_models = models[:num_models]
inference_timeout = 300
MAX_SEED = 2**32-1
def extend_choices(choices):
return choices + (num_models - len(choices)) * ['NA']
def update_imgbox(choices):
choices_plus = extend_choices(choices)
return [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_plus]
def gen_fn_original(model_str, prompt):
if model_str == 'NA':
return None
noise = str('') #str(randint(0, 99999999999))
return models_load[model_str](f'{prompt} {noise}')
def gen_fnsix(model_str, prompt):
if model_str == 'NA':
return None
noisesix = str(randint(1941, 2023)) #str(randint(0, 99999999999))
return models_load[model_str](f'{prompt} {noisesix}')
# https://huggingface.co/docs/api-inference/detailed_parameters
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
async def infer(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1, timeout=inference_timeout):
from pathlib import Path
kwargs = {}
if height is not None and height >= 256: kwargs["height"] = height
if width is not None and width >= 256: kwargs["width"] = width
if steps is not None and steps >= 1: kwargs["num_inference_steps"] = steps
if cfg is not None and cfg > 0: cfg = kwargs["guidance_scale"] = cfg
noise = ""
if seed >= 0: kwargs["seed"] = seed
else:
rand = randint(1, 500)
for i in range(rand):
noise += " "
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn,
prompt=f'{prompt} {noise}', negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
await asyncio.sleep(0)
try:
result = await asyncio.wait_for(task, timeout=timeout)
except (Exception, asyncio.TimeoutError) as e:
print(e)
print(f"Task timed out: {model_str}")
if not task.done(): task.cancel()
result = None
if task.done() and result is not None:
with lock:
png_path = "image.png"
result.save(png_path)
image = str(Path(png_path).resolve())
return image
return None
def gen_fn(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1):
if model_str == 'NA':
return None
try:
loop = asyncio.new_event_loop()
result = loop.run_until_complete(infer(model_str, prompt, nprompt,
height, width, steps, cfg, seed, inference_timeout))
except (Exception, asyncio.CancelledError) as e:
print(e)
print(f"Task aborted: {model_str}")
result = None
finally:
loop.close()
return result
css="""
.gradio-container {max-width: 1200px; margin: 0 auto; !important;}
.output { width=128px; height=128px; !important; }
.outputone { width=512px; height=512px; !important; }
"""
with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=css) as demo:
gr.HTML(
"""
<div>
<p> <center><img src="https://huggingface.co/Yntec/OpenGenDiffusers/resolve/main/pp.png" style="height:128px; width:482px; margin-top: -22px; margin-bottom: -44px;" span title="Free ai art image generator Printing Press"></center>
</p>
"""
)
with gr.Tab('One Image'):
model_choice = gr.Dropdown(models, label=f'Choose a model from the {int(len(models))} available! Try clearing the box and typing on it to filter them!', value=models[0], filterable=True)
with gr.Group():
txt_input = gr.Textbox(label='Your prompt:', lines=1)
with gr.Accordion("Advanced", open=False, visible=True):
neg_input = gr.Textbox(label='Negative prompt:', lines=1)
with gr.Row():
width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
with gr.Row():
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
num_imagesone = gr.Slider(1, max_imagesone, value=max_imagesone, step=1, label='Nobody gets to see this label so I can put here whatever I want!', visible=False)
with gr.Row():
gen_button = gr.Button('Generate', variant='primary', scale=3)
#stop_button = gr.Button('Stop', variant='secondary', interactive=False, scale=1)
#gen_button.click(lambda: gr.update(interactive=True), None, stop_button)
with gr.Row():
output = [gr.Image(label='', show_download_button=True, elem_classes="outputone",
interactive=False, min_width=80, show_share_button=False, format="png",
visible=True) for _ in range(max_imagesone)]
for i, o in enumerate(output):
img_in = gr.Number(i, visible = False)
num_imagesone.change(lambda i, n: gr.update(visible = (i < n)), [img_in, num_imagesone], o, show_progress = False)
gen_event = gr.on(triggers=[gen_button.click, txt_input.submit],
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5: gen_fn(m, t1, t2, n1, n2, n3, n4, n5) if (i < n) else None,
inputs=[img_in, num_imagesone, model_choice, txt_input, neg_input,
height, width, steps, cfg, seed], outputs=[o],
concurrency_limit=None, queue=False) # Be sure to delete ", queue=False" when activating the stop button
#stop_button.click(lambda: gr.update(interactive = False), None, stop_button, cancels=[gen_event])
with gr.Row():
gr.HTML(
"""
<div class="footer">
<p> Based on the <a href="https://huggingface.co/spaces/derwahnsinn/TestGen">TestGen</a> Space by derwahnsinn, the <a href="https://huggingface.co/spaces/RdnUser77/SpacIO_v1">SpacIO</a> Space by RdnUser77, Omnibus's Maximum Multiplier, <a href="https://huggingface.co/spaces/Yntec/Diffusion60XX">Diffusion60XX</a> and <a href="https://huggingface.co/spaces/Yntec/ToyWorld">Toy World</a>!
</p>
"""
)
with gr.Tab('Up To Six'):
model_choice2 = gr.Dropdown(models, label=f'Choose a model from the {int(len(models))} available! Try clearing the box and typing on it to filter them!',
value=models[0], filterable=True)
with gr.Group():
txt_input2 = gr.Textbox(label='Your prompt:', lines=1)
with gr.Accordion("Advanced", open=False, visible=True):
neg_input2 = gr.Textbox(label='Negative prompt:', lines=1)
with gr.Row():
width2 = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
height2 = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
with gr.Row():
steps2 = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
cfg2 = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
seed2 = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
num_images = gr.Slider(1, max_images, value=max_images, step=1,
label=f'Number of images (if you want less than {int(max_images)} decrease them slowly until they match the boxes below)')
with gr.Row():
gen_button2 = gr.Button(f'Generate up to {int(max_images)} images in up to 3 minutes total', scale=3)
#stop_button2 = gr.Button('Stop', variant='secondary', interactive=False, scale=1)
#gen_button2.click(lambda: gr.update(interactive=True), None, stop_button2)
gr.HTML(
"""
<div style="text-align: center; max-width: 1200px; margin: 0 auto;">
<div>
<body>
<div class="center"><p style="margin-bottom: 10px;">Scroll down to see more images (they generate in a random order).</p>
</div>
</body>
</div>
</div>
"""
)
with gr.Row():
output2 = [gr.Image(label = '', show_download_button=True, elem_classes="output",
interactive=False, min_width=80, visible=True, format="png",
show_share_button=False, show_label=False, width=128, height=128) for _ in range(max_images)]
for i, o in enumerate(output2):
img_i = gr.Number(i, visible=False)
num_images.change(lambda i, n: gr.update(visible=(i < n)), [img_i, num_images], o, show_progress=False)
gen_event2 = gr.on(triggers=[gen_button2.click, txt_input2.submit],
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5: gen_fn(m, t1, t2, n1, n2, n3, n4, n5) if (i < n) else None,
inputs=[img_i, num_images, model_choice2, txt_input2, neg_input2,
height2, width2, steps2, cfg2, seed2], outputs=[o],
concurrency_limit=None, queue=False) # Be sure to delete ", queue=False" when activating the stop button
#stop_button2.click(lambda: gr.update(interactive=False), None, stop_button2, cancels=[gen_event2])
with gr.Row():
gr.HTML(
"""
<div class="footer">
<p> Based on the <a href="https://huggingface.co/spaces/derwahnsinn/TestGen">TestGen</a> Space by derwahnsinn, the <a href="https://huggingface.co/spaces/RdnUser77/SpacIO_v1">SpacIO</a> Space by RdnUser77, Omnibus's Maximum Multiplier, <a href="https://huggingface.co/spaces/Yntec/Diffusion60XX">Diffusion60XX</a> and <a href="https://huggingface.co/spaces/Yntec/ToyWorld">Toy World</a>!
</p>
"""
)
#demo.queue(default_concurrency_limit=200, max_size=200)
demo.launch(show_api=False, max_threads=400) |