File size: 24,152 Bytes
3a5287f
 
e12168b
 
3a5287f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
import spaces
from pathlib import Path
import torch.multiprocessing as mp
mp.set_start_method('spawn')
import torch
import gradio as gr

from PIL import Image, ExifTags
import numpy as np
from torch import Tensor

from einops import rearrange
import uuid
import os

from src.flux.modules.layers import (
    SingleStreamBlockProcessor,
    DoubleStreamBlockLoraProcessor,
    IPDoubleStreamBlockProcessor,
    ImageProjModel,
)
from src.flux.sampling import denoise, denoise_controlnet, get_noise, get_schedule, prepare, unpack
from src.flux.util import (
    #load_ae,
    #load_clip,
    #load_flow_model,
    #load_t5,
    #load_controlnet,
    #load_flow_model_quintized,
    Annotator,
    get_lora_rank,
    load_checkpoint
)

from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor

import json
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file as load_sft
from optimum.quanto import requantize
from src.flux.model import Flux
from src.flux.controlnet import ControlNetFlux
from src.flux.modules.autoencoder import AutoEncoder
from src.flux.modules.conditioner import HFEmbedder
from src.flux.util import configs, print_load_warning


def load_flow_model(name: str, device: str | torch.device = "cuda", hf_download: bool = True):
    # Loading Flux
    print("Init model")
    ckpt_path = configs[name].ckpt_path
    if (
        ckpt_path is None
        and configs[name].repo_id is not None
        and configs[name].repo_flow is not None
        and hf_download
    ):
        ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow)

    #with torch.device("meta" if ckpt_path is not None else device):
        model = Flux(configs[name].params).to(torch.bfloat16)

    if ckpt_path is not None:
        print("Loading checkpoint")
        # load_sft doesn't support torch.device
        sd = load_sft(ckpt_path, device=str(device))
        missing, unexpected = model.load_state_dict(sd, strict=False, assign=True)
        print_load_warning(missing, unexpected)
    return model


def load_flow_model2(name: str, device: str | torch.device = "cuda", hf_download: bool = True):
    # Loading Flux
    print("Init model")
    ckpt_path = configs[name].ckpt_path
    if (
        ckpt_path is None
        and configs[name].repo_id is not None
        and configs[name].repo_flow is not None
        and hf_download
    ):
        ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow.replace("sft", "safetensors"))

    #with torch.device("meta" if ckpt_path is not None else device):
        model = Flux(configs[name].params)

    if ckpt_path is not None:
        print("Loading checkpoint")
        # load_sft doesn't support torch.device
        sd = load_sft(ckpt_path, device=str(device))
        missing, unexpected = model.load_state_dict(sd, strict=False, assign=True)
        print_load_warning(missing, unexpected)
    return model


def load_flow_model_quintized(name: str, device: str | torch.device = "cuda", hf_download: bool = True):
    # Loading Flux
    print("Init model")
    ckpt_path = configs[name].ckpt_path
    if (
        ckpt_path is None
        and configs[name].repo_id is not None
        and configs[name].repo_flow is not None
        and hf_download
    ):
        ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow)
    json_path = hf_hub_download(configs[name].repo_id, 'flux_dev_quantization_map.json')

    model = Flux(configs[name].params).to(torch.bfloat16)

    print("Loading checkpoint")
    # load_sft doesn't support torch.device
    sd = load_sft(ckpt_path, device='cpu')
    with open(json_path, "r") as f:
        quantization_map = json.load(f)
    print("Start a quantization process...")
    requantize(model, sd, quantization_map, device=device)
    print("Model is quantized!")
    return model


def load_controlnet(name, device, transformer=None):
    #with torch.device(device):
    controlnet = ControlNetFlux(configs[name].params)
    if transformer is not None:
        controlnet.load_state_dict(transformer.state_dict(), strict=False)
    return controlnet


def load_t5(device: str | torch.device = "cuda", max_length: int = 512) -> HFEmbedder:
    # max length 64, 128, 256 and 512 should work (if your sequence is short enough)
    return HFEmbedder("xlabs-ai/xflux_text_encoders", max_length=max_length, torch_dtype=torch.bfloat16).to(device)


def load_clip(device: str | torch.device = "cuda") -> HFEmbedder:
    return HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device)


def load_ae(name: str, device: str | torch.device = "cuda", hf_download: bool = True) -> AutoEncoder:
    ckpt_path = configs[name].ae_path
    if (
        ckpt_path is None
        and configs[name].repo_id is not None
        and configs[name].repo_ae is not None
        and hf_download
    ):
        ckpt_path = hf_hub_download(configs[name].repo_id_ae, configs[name].repo_ae)

    # Loading the autoencoder
    print("Init AE")
    #with torch.device("meta" if ckpt_path is not None else device):
    ae = AutoEncoder(configs[name].ae_params)

    if ckpt_path is not None:
        sd = load_sft(ckpt_path, device=str(device))
        missing, unexpected = ae.load_state_dict(sd, strict=False, assign=True)
        print_load_warning(missing, unexpected)
    return ae

class XFluxPipeline:
    def __init__(self, model_type, device, offload: bool = False):
        self.device = torch.device(device)
        self.offload = offload
        self.model_type = model_type

        self.device = "cpu"
        offload = True

        self.clip = load_clip(device="cpu" if offload else self.device)
        self.t5 = load_t5(device="cpu" if offload else self.device, max_length=512)
        self.ae = load_ae(model_type, device="cpu" if offload else self.device)
        if "fp8" in model_type:
            self.model = load_flow_model_quintized(model_type, device="cpu" if offload else self.device)
        else:
            self.model = load_flow_model(model_type, device="cpu" if offload else self.device)

        self.image_encoder_path = "openai/clip-vit-large-patch14"
        self.hf_lora_collection = "XLabs-AI/flux-lora-collection"
        self.lora_types_to_names = {
            "realism": "lora.safetensors",
        }
        self.controlnet_loaded = False
        self.ip_loaded = False

        self.device = torch.device(device)

    def set_ip(self, local_path: str = None, repo_id = None, name: str = None):
        self.model.to(self.device)

        # unpack checkpoint
        checkpoint = load_checkpoint(local_path, repo_id, name)
        prefix = "double_blocks."
        blocks = {}
        proj = {}

        for key, value in checkpoint.items():
            if key.startswith(prefix):
                blocks[key[len(prefix):].replace('.processor.', '.')] = value
            if key.startswith("ip_adapter_proj_model"):
                proj[key[len("ip_adapter_proj_model."):]] = value

        for key, value in checkpoint.items():
            if key.startswith(prefix):
                blocks[key[len(prefix):].replace('.processor.', '.')] = value
            if key.startswith("ip_adapter_proj_model"):
                proj[key[len("ip_adapter_proj_model."):]] = value

        # load image encoder
        self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
            self.device, dtype=torch.float16
        )
        self.clip_image_processor = CLIPImageProcessor()

        # setup image embedding projection model
        self.improj = ImageProjModel(4096, 768, 4)
        self.improj.load_state_dict(proj)
        self.improj = self.improj.to(self.device, dtype=torch.bfloat16)

        ip_attn_procs = {}

        for name, _ in self.model.attn_processors.items():
            ip_state_dict = {}
            for k in checkpoint.keys():
                if name in k:
                    ip_state_dict[k.replace(f'{name}.', '')] = checkpoint[k]
            if ip_state_dict:
                ip_attn_procs[name] = IPDoubleStreamBlockProcessor(4096, 3072)
                ip_attn_procs[name].load_state_dict(ip_state_dict)
                ip_attn_procs[name].to(self.device, dtype=torch.bfloat16)
            else:
                ip_attn_procs[name] = self.model.attn_processors[name]

        self.model.set_attn_processor(ip_attn_procs)
        self.ip_loaded = True

    def set_lora(self, local_path: str = None, repo_id: str = None,

                 name: str = None, lora_weight: int = 0.7):
        checkpoint = load_checkpoint(local_path, repo_id, name)
        self.update_model_with_lora(checkpoint, lora_weight)

    def set_lora_from_collection(self, lora_type: str = "realism", lora_weight: int = 0.7):
        checkpoint = load_checkpoint(
            None, self.hf_lora_collection, self.lora_types_to_names[lora_type]
        )
        self.update_model_with_lora(checkpoint, lora_weight)

    def update_model_with_lora(self, checkpoint, lora_weight):
        rank = get_lora_rank(checkpoint)
        lora_attn_procs = {}

        for name, _ in self.model.attn_processors.items():
            if name.startswith("single_blocks"):
                lora_attn_procs[name] = SingleStreamBlockProcessor()
                continue
            lora_attn_procs[name] = DoubleStreamBlockLoraProcessor(dim=3072, rank=rank)
            lora_state_dict = {}
            for k in checkpoint.keys():
                if name in k:
                    lora_state_dict[k[len(name) + 1:]] = checkpoint[k] * lora_weight
            lora_attn_procs[name].load_state_dict(lora_state_dict)
            lora_attn_procs[name].to(self.device)

        self.model.set_attn_processor(lora_attn_procs)

    def set_controlnet(self, control_type: str, local_path: str = None, repo_id: str = None, name: str = None):
        self.model.to(self.device)
        self.controlnet = load_controlnet(self.model_type, device="cpu" if self.offload else self.device).to(torch.bfloat16)

        checkpoint = load_checkpoint(local_path, repo_id, name)
        self.controlnet.load_state_dict(checkpoint, strict=False)
        self.annotator = Annotator(control_type, self.device)
        self.controlnet_loaded = True
        self.control_type = control_type

    def get_image_proj(

        self,

        image_prompt: Tensor,

    ):
        # encode image-prompt embeds
        image_prompt = self.clip_image_processor(
            images=image_prompt,
            return_tensors="pt"
        ).pixel_values
        image_prompt = image_prompt.to(self.image_encoder.device)
        image_prompt_embeds = self.image_encoder(
            image_prompt
        ).image_embeds.to(
            device=self.device, dtype=torch.bfloat16,
        )
        # encode image
        image_proj = self.improj(image_prompt_embeds)
        return image_proj

    def __call__(self,

                 prompt: str,

                 image_prompt: Image.Image | None = None,

                 controlnet_image: Image.Image | None  = None,

                 width: int = 512,

                 height: int = 512,

                 guidance: float = 4,

                 num_steps: int = 50,

                 seed: int = 123456789,

                 true_gs: float = 3,

                 control_weight: float = 0.9,

                 ip_scale: float = 1.0,

                 neg_ip_scale: float = 1.0,

                 neg_prompt: str = '',

                 neg_image_prompt: Image.Image | None = None,

                 timestep_to_start_cfg: int = 0,

                 ):
        width = 16 * (width // 16)
        height = 16 * (height // 16)
        image_proj = None
        neg_image_proj = None
        if not (image_prompt is None and neg_image_prompt is None) :
            assert self.ip_loaded, 'You must setup IP-Adapter to add image prompt as input'

            if image_prompt is None:
                image_prompt = np.zeros((width, height, 3), dtype=np.uint8)
            if neg_image_prompt is None:
                neg_image_prompt = np.zeros((width, height, 3), dtype=np.uint8)

            image_proj = self.get_image_proj(image_prompt)
            neg_image_proj = self.get_image_proj(neg_image_prompt)

        if self.controlnet_loaded:
            controlnet_image = self.annotator(controlnet_image, width, height)
            controlnet_image = torch.from_numpy((np.array(controlnet_image) / 127.5) - 1)
            controlnet_image = controlnet_image.permute(
                2, 0, 1).unsqueeze(0).to(torch.bfloat16).to(self.device)

        return self.forward(
            prompt,
            width,
            height,
            guidance,
            num_steps,
            seed,
            controlnet_image,
            timestep_to_start_cfg=timestep_to_start_cfg,
            true_gs=true_gs,
            control_weight=control_weight,
            neg_prompt=neg_prompt,
            image_proj=image_proj,
            neg_image_proj=neg_image_proj,
            ip_scale=ip_scale,
            neg_ip_scale=neg_ip_scale,
        )

    @torch.inference_mode()
    @spaces.GPU()
    def gradio_generate(self, prompt, image_prompt, controlnet_image, width, height, guidance,

                        num_steps, seed, true_gs, ip_scale, neg_ip_scale, neg_prompt,

                        neg_image_prompt, timestep_to_start_cfg, control_type, control_weight,

                        lora_weight, local_path, lora_local_path, ip_local_path):
        if controlnet_image is not None:
            controlnet_image = Image.fromarray(controlnet_image)
            if ((self.controlnet_loaded and control_type != self.control_type)
                or not self.controlnet_loaded):
                if local_path is not None:
                    self.set_controlnet(control_type, local_path=local_path)
                else:
                    self.set_controlnet(control_type, local_path=None,
                                        repo_id=f"xlabs-ai/flux-controlnet-{control_type}-v3",
                                        name=f"flux-{control_type}-controlnet-v3.safetensors")
        if lora_local_path is not None:
            self.set_lora(local_path=lora_local_path, lora_weight=lora_weight)
        if image_prompt is not None:
            image_prompt = Image.fromarray(image_prompt)
            if neg_image_prompt is not None:
                neg_image_prompt = Image.fromarray(neg_image_prompt)
            if not self.ip_loaded:
                if ip_local_path is not None:
                    self.set_ip(local_path=ip_local_path)
                else:
                    self.set_ip(repo_id="xlabs-ai/flux-ip-adapter",
                                name="flux-ip-adapter.safetensors")
        seed = int(seed)
        if seed == -1:
            seed = torch.Generator(device="cpu").seed()

        img = self(prompt, image_prompt, controlnet_image, width, height, guidance,
                   num_steps, seed, true_gs, control_weight, ip_scale, neg_ip_scale, neg_prompt,
                   neg_image_prompt, timestep_to_start_cfg)

        filename = f"output/gradio/{uuid.uuid4()}.jpg"
        os.makedirs(os.path.dirname(filename), exist_ok=True)
        exif_data = Image.Exif()
        exif_data[ExifTags.Base.Make] = "XLabs AI"
        exif_data[ExifTags.Base.Model] = self.model_type
        img.save(filename, format="jpeg", exif=exif_data, quality=95, subsampling=0)
        return img, filename

    def forward(

        self,

        prompt,

        width,

        height,

        guidance,

        num_steps,

        seed,

        controlnet_image = None,

        timestep_to_start_cfg = 0,

        true_gs = 3.5,

        control_weight = 0.9,

        neg_prompt="",

        image_proj=None,

        neg_image_proj=None,

        ip_scale=1.0,

        neg_ip_scale=1.0,

    ):
        x = get_noise(
            1, height, width, device=self.device,
            dtype=torch.bfloat16, seed=seed
        )
        timesteps = get_schedule(
            num_steps,
            (width // 8) * (height // 8) // (16 * 16),
            shift=True,
        )
        torch.manual_seed(seed)
        with torch.no_grad():
            if self.offload:
                self.t5, self.clip = self.t5.to(self.device), self.clip.to(self.device)
            inp_cond = prepare(t5=self.t5, clip=self.clip, img=x, prompt=prompt)
            neg_inp_cond = prepare(t5=self.t5, clip=self.clip, img=x, prompt=neg_prompt)

            if self.offload:
                self.offload_model_to_cpu(self.t5, self.clip)
                self.model = self.model.to(self.device)
            if self.controlnet_loaded:
                x = denoise_controlnet(
                    self.model,
                    **inp_cond,
                    controlnet=self.controlnet,
                    timesteps=timesteps,
                    guidance=guidance,
                    controlnet_cond=controlnet_image,
                    timestep_to_start_cfg=timestep_to_start_cfg,
                    neg_txt=neg_inp_cond['txt'],
                    neg_txt_ids=neg_inp_cond['txt_ids'],
                    neg_vec=neg_inp_cond['vec'],
                    true_gs=true_gs,
                    controlnet_gs=control_weight,
                    image_proj=image_proj,
                    neg_image_proj=neg_image_proj,
                    ip_scale=ip_scale,
                    neg_ip_scale=neg_ip_scale,
                )
            else:
                x = denoise(
                    self.model,
                    **inp_cond,
                    timesteps=timesteps,
                    guidance=guidance,
                    timestep_to_start_cfg=timestep_to_start_cfg,
                    neg_txt=neg_inp_cond['txt'],
                    neg_txt_ids=neg_inp_cond['txt_ids'],
                    neg_vec=neg_inp_cond['vec'],
                    true_gs=true_gs,
                    image_proj=image_proj,
                    neg_image_proj=neg_image_proj,
                    ip_scale=ip_scale,
                    neg_ip_scale=neg_ip_scale,
                )

            if self.offload:
                self.offload_model_to_cpu(self.model)
                self.ae.decoder.to(x.device)
            x = unpack(x.float(), height, width)
            x = self.ae.decode(x)
            self.offload_model_to_cpu(self.ae.decoder)

        x1 = x.clamp(-1, 1)
        x1 = rearrange(x1[-1], "c h w -> h w c")
        output_img = Image.fromarray((127.5 * (x1 + 1.0)).cpu().byte().numpy())
        return output_img

    def offload_model_to_cpu(self, *models):
        if not self.offload: return
        for model in models:
            model.cpu()
            torch.cuda.empty_cache()

def create_demo(

        model_type: str,

        device: str = "cuda" if torch.cuda.is_available() else "cpu",

        offload: bool = False,

        ckpt_dir: str = "",

    ):
    try:
        xflux_pipeline = XFluxPipeline(model_type, device, offload)
    except Exception as e:
        print(e)
    checkpoints = sorted(Path(ckpt_dir).glob("*.safetensors"))

    with gr.Blocks() as demo:
        gr.Markdown("⚠️ Warning: Gradio is not functioning correctly. We are looking for someone to help fix it by submitting a Pull Request.")
        gr.Markdown(f"# Flux Adapters by XLabs AI - Model: {model_type}")
        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(label="Prompt", value="handsome woman in the city")

                with gr.Accordion("Generation Options", open=False):
                    with gr.Row():
                        width = gr.Slider(512, 2048, 1024, step=16, label="Width")
                        height = gr.Slider(512, 2048, 1024, step=16, label="Height")
                    neg_prompt = gr.Textbox(label="Negative Prompt", value="bad photo")
                    with gr.Row():
                        num_steps = gr.Slider(1, 50, 25, step=1, label="Number of steps")
                        timestep_to_start_cfg = gr.Slider(1, 50, 1, step=1, label="timestep_to_start_cfg")
                    with gr.Row():
                        guidance = gr.Slider(1.0, 5.0, 4.0, step=0.1, label="Guidance", interactive=True)
                        true_gs = gr.Slider(1.0, 5.0, 3.5, step=0.1, label="True Guidance", interactive=True)
                    seed = gr.Textbox(-1, label="Seed (-1 for random)")

                with gr.Accordion("ControlNet Options", open=False):
                    control_type = gr.Dropdown(["canny", "hed", "depth"], label="Control type")
                    control_weight = gr.Slider(0.0, 1.0, 0.8, step=0.1, label="Controlnet weight", interactive=True)
                    local_path = gr.Dropdown(checkpoints, label="Controlnet Checkpoint",
                        info="Local Path to Controlnet weights (if no, it will be downloaded from HF)")
                    controlnet_image = gr.Image(label="Input Controlnet Image", visible=True, interactive=True)

                with gr.Accordion("LoRA Options", open=False):
                    lora_weight = gr.Slider(0.0, 1.0, 0.9, step=0.1, label="LoRA weight", interactive=True)
                    lora_local_path = gr.Dropdown(
                        checkpoints, label="LoRA Checkpoint", info="Local Path to Lora weights")

                with gr.Accordion("IP Adapter Options", open=False):
                    image_prompt = gr.Image(label="image_prompt", visible=True, interactive=True)
                    ip_scale = gr.Slider(0.0, 1.0, 1.0, step=0.1, label="ip_scale")
                    neg_image_prompt = gr.Image(label="neg_image_prompt", visible=True, interactive=True)
                    neg_ip_scale = gr.Slider(0.0, 1.0, 1.0, step=0.1, label="neg_ip_scale")
                    ip_local_path = gr.Dropdown(checkpoints, label="IP Adapter Checkpoint",
                        info="Local Path to IP Adapter weights (if no, it will be downloaded from HF)")
                generate_btn = gr.Button("Generate")

            with gr.Column():
                output_image = gr.Image(label="Generated Image")
                download_btn = gr.File(label="Download full-resolution")

        @spaces.GPU()
        def gradio_generate(*args):
            return xflux_pipeline.gradio_generate(*args)
        
        inputs = [prompt, image_prompt, controlnet_image, width, height, guidance,
                  num_steps, seed, true_gs, ip_scale, neg_ip_scale, neg_prompt,
                  neg_image_prompt, timestep_to_start_cfg, control_type, control_weight,
                  lora_weight, local_path, lora_local_path, ip_local_path]
        generate_btn.click(
            fn=gradio_generate,
            inputs=inputs,
            outputs=[output_image, download_btn],
        )

    return demo

if __name__ == "__main__":
    import argparse
    parser = argparse.ArgumentParser(description="Flux")
    parser.add_argument("--name", type=str, default="flux-dev", help="Model name")
    parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", help="Device to use")
    parser.add_argument("--offload", action="store_true", help="Offload model to CPU when not in use")
    parser.add_argument("--share", action="store_true", help="Create a public link to your demo")
    parser.add_argument("--ckpt_dir", type=str, default=".", help="Folder with checkpoints in safetensors format")
    args = parser.parse_args()

    demo = create_demo(args.name, args.device, args.offload, args.ckpt_dir)
    demo.launch(share=args.share)