Spaces:
Running
Running
File size: 6,025 Bytes
c25cab5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import gradio as gr
from huggingface_hub import HfApi, HfFolder, hf_hub_download
import os
from pathlib import Path
import shutil
import gc
import re
import urllib.parse
def get_token():
try:
token = HfFolder.get_token()
except Exception:
token = ""
return token
def set_token(token):
try:
HfFolder.save_token(token)
except Exception:
print(f"Error: Failed to save token.")
def get_user_agent():
return 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:127.0) Gecko/20100101 Firefox/127.0'
def is_repo_exists(repo_id: str, repo_type: str="model"):
hf_token = get_token()
api = HfApi(token=hf_token)
try:
if api.repo_exists(repo_id=repo_id, repo_type=repo_type, token=hf_token): return True
else: return False
except Exception as e:
print(f"Error: Failed to connect {repo_id} ({repo_type}). {e}")
return True # for safe
MODEL_TYPE_CLASS = {
"diffusers:StableDiffusionPipeline": "SD 1.5",
"diffusers:StableDiffusionXLPipeline": "SDXL",
"diffusers:FluxPipeline": "FLUX",
}
def get_model_type(repo_id: str):
hf_token = get_token()
api = HfApi(token=hf_token)
lora_filename = "pytorch_lora_weights.safetensors"
diffusers_filename = "model_index.json"
default = "SDXL"
try:
if api.file_exists(repo_id=repo_id, filename=lora_filename, token=hf_token): return "LoRA"
if not api.file_exists(repo_id=repo_id, filename=diffusers_filename, token=hf_token): return "None"
model = api.model_info(repo_id=repo_id, token=hf_token)
tags = model.tags
for tag in tags:
if tag in MODEL_TYPE_CLASS.keys(): return MODEL_TYPE_CLASS.get(tag, default)
except Exception:
return default
return default
def list_sub(a, b):
return [e for e in a if e not in b]
def is_repo_name(s):
return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)
def split_hf_url(url: str):
try:
s = list(re.findall(r'^(?:https?://huggingface.co/)(?:(datasets)/)?(.+?/.+?)/\w+?/.+?/(?:(.+)/)?(.+?.safetensors)(?:\?download=true)?$', url)[0])
if len(s) < 4: return "", "", "", ""
repo_id = s[1]
repo_type = "dataset" if s[0] == "datasets" else "model"
subfolder = urllib.parse.unquote(s[2]) if s[2] else None
filename = urllib.parse.unquote(s[3])
return repo_id, filename, subfolder, repo_type
except Exception as e:
print(e)
def download_hf_file(directory, url, progress=gr.Progress(track_tqdm=True)):
hf_token = get_token()
repo_id, filename, subfolder, repo_type = split_hf_url(url)
try:
if subfolder is not None: hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder, repo_type=repo_type, local_dir=directory, token=hf_token)
else: hf_hub_download(repo_id=repo_id, filename=filename, repo_type=repo_type, local_dir=directory, token=hf_token)
except Exception as e:
print(f"Failed to download: {e}")
def download_thing(directory, url, civitai_api_key="", progress=gr.Progress(track_tqdm=True)): # requires aria2, gdown
hf_token = get_token()
url = url.strip()
if "drive.google.com" in url:
original_dir = os.getcwd()
os.chdir(directory)
os.system(f"gdown --fuzzy {url}")
os.chdir(original_dir)
elif "huggingface.co" in url:
url = url.replace("?download=true", "")
if "/blob/" in url:
url = url.replace("/blob/", "/resolve/")
#user_header = f'"Authorization: Bearer {hf_token}"'
if hf_token:
download_hf_file(directory, url)
#os.system(f"aria2c --console-log-level=error --summary-interval=10 --header={user_header} -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
else:
os.system(f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
elif "civitai.com" in url:
if "?" in url:
url = url.split("?")[0]
if civitai_api_key:
url = url + f"?token={civitai_api_key}"
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
else:
print("You need an API key to download Civitai models.")
else:
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
def get_local_model_list(dir_path):
model_list = []
valid_extensions = ('.safetensors')
for file in Path(dir_path).glob("**/*.*"):
if file.is_file() and file.suffix in valid_extensions:
file_path = str(file)
model_list.append(file_path)
return model_list
def get_download_file(temp_dir, url, civitai_key, progress=gr.Progress(track_tqdm=True)):
if not "http" in url and is_repo_name(url) and not Path(url).exists():
print(f"Use HF Repo: {url}")
new_file = url
elif not "http" in url and Path(url).exists():
print(f"Use local file: {url}")
new_file = url
elif Path(f"{temp_dir}/{url.split('/')[-1]}").exists():
print(f"File to download alreday exists: {url}")
new_file = f"{temp_dir}/{url.split('/')[-1]}"
else:
print(f"Start downloading: {url}")
before = get_local_model_list(temp_dir)
try:
download_thing(temp_dir, url.strip(), civitai_key)
except Exception:
print(f"Download failed: {url}")
return ""
after = get_local_model_list(temp_dir)
new_file = list_sub(after, before)[0] if list_sub(after, before) else ""
if not new_file:
print(f"Download failed: {url}")
return ""
print(f"Download completed: {url}")
return new_file
|