Spaces:
Runtime error
Runtime error
import spaces | |
import gradio as gr | |
import torch | |
from huggingface_hub import hf_hub_download | |
from diffusers import FluxPipeline, FluxTransformer2DModel, GGUFQuantizationConfig, BitsAndBytesConfig | |
import os | |
import subprocess | |
#subprocess.run("pip list", shell=True) | |
#subprocess.run("diffusers-cli env", shell=True) | |
#from optimum.quanto import freeze, qfloat8, quantize | |
HF_TOKEN = os.getenv("HF_TOKEN", "") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
flux_repo = "multimodalart/FLUX.1-dev2pro-full" | |
ckpt_path = "https://huggingface.co/city96/FLUX.1-dev-gguf/blob/main/flux1-dev-Q2_K.gguf" | |
transformer_gguf = FluxTransformer2DModel.from_single_file(ckpt_path, subfolder="transformer", quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16), | |
torch_dtype=torch.bfloat16, config=flux_repo, token=HF_TOKEN) | |
transformer = FluxTransformer2DModel.from_pretrained(flux_repo, subfolder="transformer", torch_dtype=torch.bfloat16, token=HF_TOKEN) | |
nf4_quantization_config = BitsAndBytesConfig(load_in_4bit=True) | |
transformer_nf4 = FluxTransformer2DModel.from_pretrained(flux_repo, subfolder="transformer", quantization_config=nf4_quantization_config, | |
torch_dtype=torch.bfloat16, token=HF_TOKEN) | |
pipe = FluxPipeline.from_pretrained(flux_repo, transformer=transformer, torch_dtype=torch.bfloat16, token=HF_TOKEN) | |
hyper_sd_lora = hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors") | |
def infer(prompt: str, mode: str, is_lora: bool, progress=gr.Progress(track_tqdm=True)): | |
global pipe | |
try: | |
pipe.unload_lora_weights() | |
if mode == "Default": pipe.transformer = transformer | |
elif mode == "GGUF": pipe.transformer = transformer_gguf | |
elif mode == "NF4": pipe.transformer = transformer_nf4 | |
if is_lora: | |
pipe.load_lora_weights(hyper_sd_lora, adapter_name="hyper-sd") | |
pipe.set_adapters(["hyper-sd"], adapter_weights=[0.125]) | |
steps = 8 | |
else: steps = 28 | |
pipe.to(device) | |
image = pipe(prompt, generator=torch.manual_seed(0), num_inference_steps=steps).images[0] | |
pipe.to("cpu") | |
return image | |
except Exception as e: | |
raise gr.Error(e) | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt", value="A cat holding a sign that says hello world", lines=1) | |
mode = gr.Radio(label="Mode", choices=["Default", "GGUF", "NF4"], value="Default") | |
is_lora = gr.Checkbox(label="Enable LoRA", value=True) | |
gen_btn = gr.Button("Generate Image") | |
with gr.Column(): | |
result = gr.Image(label="Result Image") | |
gen_btn.click(infer, [prompt, mode, is_lora], [result]) | |
demo.launch() | |