import spaces import gradio as gr import json import logging import torch from PIL import Image from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images from diffusers import FluxControlNetPipeline, FluxControlNetModel, FluxMultiControlNetModel from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download import copy import random import time from mod import (models, clear_cache, get_repo_safetensors, is_repo_name, is_repo_exists, description_ui, num_loras, compose_lora_json, is_valid_lora, fuse_loras, get_trigger_word, enhance_prompt, deselect_lora, num_cns, set_control_union_image, get_control_union_mode, set_control_union_mode, get_control_params) from flux import (search_civitai_lora, select_civitai_lora, search_civitai_lora_json, download_my_lora, get_all_lora_tupled_list, apply_lora_prompt, update_loras, get_t2i_model_info) from tagger.tagger import predict_tags_wd, compose_prompt_to_copy from tagger.fl2flux import predict_tags_fl2_flux # Load LoRAs from JSON file with open('loras.json', 'r') as f: loras = json.load(f) dtype = torch.bfloat16 #dtype = torch.float8_e4m3fn device = "cuda" if torch.cuda.is_available() else "cpu" # Initialize the base model base_model = models[0] controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union' #controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union-alpha' taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device) pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device) controlnet_union = None controlnet = None last_model = models[0] last_cn_on = False MAX_SEED = 2**32-1 pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) # https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union # https://huggingface.co/spaces/jiuface/FLUX.1-dev-Controlnet-Union @spaces.GPU() def change_base_model(repo_id: str, cn_on: bool): # , progress=gr.Progress(track_tqdm=True) # gradio.exceptions.Error: 'Model load Error: too many values to unpack (expected 2)' global pipe global controlnet_union global controlnet global last_model global last_cn_on try: if (repo_id == last_model and cn_on is last_cn_on) or not is_repo_name(repo_id) or not is_repo_exists(repo_id): yield gr.update(visible=True) if cn_on: #progress(0, desc=f"Loading model: {repo_id} / Loading ControlNet: {controlnet_model_union_repo}") print(f"Loading model: {repo_id} / Loading ControlNet: {controlnet_model_union_repo}") #clear_cache() controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union_repo, torch_dtype=dtype)#.to(device) controlnet = FluxMultiControlNetModel([controlnet_union])#.to(device) pipe = FluxControlNetPipeline.from_pretrained(repo_id, controlnet=controlnet, torch_dtype=dtype)#.to(device) #pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) last_model = repo_id last_cn_on = cn_on #progress(1, desc=f"Model loaded: {repo_id} / ControlNet Loaded: {controlnet_model_union_repo}") print(f"Model loaded: {repo_id} / ControlNet Loaded: {controlnet_model_union_repo}") else: #progress(0, desc=f"Loading model: {repo_id}") print(f"Loading model: {repo_id}") #clear_cache() pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=dtype)#, vae=taef1 .to(device) pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) last_model = repo_id last_cn_on = cn_on #progress(1, desc=f"Model loaded: {repo_id}") print(f"Model loaded: {repo_id}") except Exception as e: print(f"Model load Error: {e}") raise gr.Error(f"Model load Error: {e}") yield gr.update(visible=True) change_base_model.zerogpu = True def preload_base_model(repo_id: str, cn_on: bool, progress=gr.Progress(track_tqdm=True)): global last_model global last_cn_on try: if (repo_id == last_model and cn_on is last_cn_on) or not is_repo_name(repo_id) or not is_repo_exists(repo_id): yield gr.update(visible=True) DiffusionPipeline.from_pretrained(repo_id, torch_dtype=dtype) print(f"Caching Model") except Exception as e: print(f"Model cache Error: {e}") yield gr.update(visible=True) preload_base_model.zerogpu = True class calculateDuration: def __init__(self, activity_name=""): self.activity_name = activity_name def __enter__(self): self.start_time = time.time() return self def __exit__(self, exc_type, exc_value, traceback): self.end_time = time.time() self.elapsed_time = self.end_time - self.start_time if self.activity_name: print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") else: print(f"Elapsed time: {self.elapsed_time:.6f} seconds") def update_selection(evt: gr.SelectData, width, height): selected_lora = loras[evt.index] new_placeholder = f"Type a prompt for {selected_lora['title']}" lora_repo = selected_lora["repo"] updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨" if "aspect" in selected_lora: if selected_lora["aspect"] == "portrait": width = 768 height = 1024 elif selected_lora["aspect"] == "landscape": width = 1024 height = 768 else: width = 1024 height = 1024 return ( gr.update(placeholder=new_placeholder), updated_text, evt.index, width, height, ) @spaces.GPU(duration=70) def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, cn_on, progress=gr.Progress(track_tqdm=True)): global pipe global taef1 global good_vae global controlnet global controlnet_union try: #good_vae.to("cuda") #taef1.to("cuda") pipe.vae = taef1 pipe.to("cuda") generator = torch.Generator(device="cuda").manual_seed(seed) with calculateDuration("Generating image"): # Generate image modes, images, scales = get_control_params() if not cn_on or len(modes) == 0: progress(0, desc="Start Inference.") for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( prompt=prompt_mash, num_inference_steps=steps, guidance_scale=cfg_scale, width=width, height=height, generator=generator, joint_attention_kwargs={"scale": lora_scale}, output_type="pil", good_vae=good_vae, ): yield img else: progress(0, desc="Start Inference with ControlNet.") #if controlnet is not None: controlnet.to("cuda") #if controlnet_union is not None: controlnet_union.to("cuda") for img in pipe( prompt=prompt_mash, control_image=images, control_mode=modes, num_inference_steps=steps, guidance_scale=cfg_scale, width=width, height=height, controlnet_conditioning_scale=scales, generator=generator, joint_attention_kwargs={"scale": lora_scale}, ).images: yield img except Exception as e: print(e) raise gr.Error(f"Inference Error: {e}") def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, lora_json, cn_on, progress=gr.Progress(track_tqdm=True)): global pipe global taef1 global good_vae global controlnet global controlnet_union if selected_index is None and not is_valid_lora(lora_json): gr.Info("LoRA isn't selected.") # raise gr.Error("You must select a LoRA before proceeding.") progress(0, desc="Preparing Inference.") with calculateDuration("Unloading LoRA"): try: pipe.unfuse_lora() pipe.unload_lora_weights() except Exception as e: print(e) prompt_mash = prompt if is_valid_lora(lora_json): # Load External LoRA weights with calculateDuration("Loading External LoRA weights"): fuse_loras(pipe, lora_json) trigger_word = get_trigger_word(lora_json) prompt_mash = f"{prompt} {trigger_word}" if selected_index is not None: selected_lora = loras[selected_index] lora_path = selected_lora["repo"] trigger_word = selected_lora["trigger_word"] if(trigger_word): if "trigger_position" in selected_lora: if selected_lora["trigger_position"] == "prepend": prompt_mash = f"{trigger_word} {prompt}" else: prompt_mash = f"{prompt} {trigger_word}" else: prompt_mash = f"{trigger_word} {prompt}" else: prompt_mash = prompt # Load LoRA weights with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"): if "weights" in selected_lora: pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"]) else: pipe.load_lora_weights(lora_path) # Set random seed for reproducibility with calculateDuration("Randomizing seed"): if randomize_seed: seed = random.randint(0, MAX_SEED) progress(0, desc="Running Inference.") image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, cn_on, progress) # Consume the generator to get the final image final_image = None step_counter = 0 for image in image_generator: step_counter+=1 final_image = image progress_bar = f'
' yield image, seed, gr.update(value=progress_bar, visible=True) yield final_image, seed, gr.update(value=progress_bar, visible=False) #if is_valid_lora(lora_json): # pipe.unfuse_lora() # pipe.unload_lora_weights() #if selected_index is not None: pipe.unload_lora_weights() #pipe.to("cpu") #good_vae.to("cpu") #taef1.to("cpu") #if controlnet is not None: controlnet.to("cpu") #if controlnet_union is not None: controlnet_union.to("cpu") #clear_cache() #return final_image, seed # Return the final image and seed def get_huggingface_safetensors(link): split_link = link.split("/") if(len(split_link) == 2): model_card = ModelCard.load(link) base_model = model_card.data.get("base_model") print(base_model) if((base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell")): raise Exception("Not a FLUX LoRA!") image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None) trigger_word = model_card.data.get("instance_prompt", "") image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None fs = HfFileSystem() try: list_of_files = fs.ls(link, detail=False) for file in list_of_files: if(file.endswith(".safetensors")): safetensors_name = file.split("/")[-1] if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))): image_elements = file.split("/") image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}" except Exception as e: print(e) gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA") raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA") return split_link[1], link, safetensors_name, trigger_word, image_url def check_custom_model(link): if(link.startswith("https://")): if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")): link_split = link.split("huggingface.co/") return get_huggingface_safetensors(link_split[1]) else: return get_huggingface_safetensors(link) def add_custom_lora(custom_lora): global loras if(custom_lora): try: title, repo, path, trigger_word, image = check_custom_model(custom_lora) print(f"Loaded custom LoRA: {repo}") card = f'''
Loaded custom LoRA:

{title}

{"Using: "+trigger_word+" as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}
''' existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None) if(not existing_item_index): new_item = { "image": image, "title": title, "repo": repo, "weights": path, "trigger_word": trigger_word } print(new_item) existing_item_index = len(loras) loras.append(new_item) return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word except Exception as e: gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-FLUX LoRA") return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-FLUX LoRA"), gr.update(visible=True), gr.update(), "", None, "" else: return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "" def remove_custom_lora(): return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "" run_lora.zerogpu = True css = ''' #gen_btn{height: 100%} #title{text-align: center} #title h1{font-size: 3em; display:inline-flex; align-items:center} #title img{width: 100px; margin-right: 0.5em} #gallery .grid-wrap{height: 10vh} #lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%} .card_internal{display: flex;height: 100px;margin-top: .5em} .card_internal img{margin-right: 1em} .styler{--form-gap-width: 0px !important} #progress{height:30px} #progress .generating{display:none} .progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px} .progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out} #model-info {text-align: center; !important} ''' with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css) as app: with gr.Tab("FLUX LoRA the Explorer"): title = gr.HTML( """

LoRAFLUX LoRA the Explorer Mod

""", elem_id="title", ) selected_index = gr.State(None) with gr.Row(): with gr.Column(scale=3): with gr.Group(): with gr.Accordion("Generate Prompt from Image", open=False): tagger_image = gr.Image(label="Input image", type="pil", sources=["upload", "clipboard"], height=256) with gr.Accordion(label="Advanced options", open=False): tagger_general_threshold = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True) tagger_character_threshold = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True) neg_prompt = gr.Text(label="Negative Prompt", lines=1, max_lines=8, placeholder="", visible=False) v2_character = gr.Textbox(label="Character", placeholder="hatsune miku", scale=2, visible=False) v2_series = gr.Textbox(label="Series", placeholder="vocaloid", scale=2, visible=False) v2_copy = gr.Button(value="Copy to clipboard", size="sm", interactive=False, visible=False) tagger_algorithms = gr.CheckboxGroup(["Use WD Tagger", "Use Florence-2-Flux"], label="Algorithms", value=["Use WD Tagger"]) tagger_generate_from_image = gr.Button(value="Generate Prompt from Image") prompt = gr.Textbox(label="Prompt", lines=1, max_lines=8, placeholder="Type a prompt") prompt_enhance = gr.Button(value="Enhance your prompt", variant="secondary") with gr.Column(scale=1, elem_id="gen_column"): generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn") with gr.Row(): with gr.Column(): selected_info = gr.Markdown("") gallery = gr.Gallery( [(item["image"], item["title"]) for item in loras], label="LoRA Gallery", allow_preview=False, columns=3, elem_id="gallery" ) with gr.Group(): custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="multimodalart/vintage-ads-flux") gr.Markdown("[Check the list of FLUX LoRas](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list") custom_lora_info = gr.HTML(visible=False) custom_lora_button = gr.Button("Remove custom LoRA", visible=False) deselect_lora_button = gr.Button("Deselect LoRA", variant="secondary") with gr.Column(): progress_bar = gr.Markdown(elem_id="progress",visible=False) result = gr.Image(label="Generated Image", format="png", show_share_button=False) with gr.Group(): model_name = gr.Dropdown(label="Base Model", info="You can enter a huggingface model repo_id to want to use.", choices=models, value=models[0], allow_custom_value=True) model_info = gr.Markdown(elem_id="model-info") with gr.Row(): with gr.Accordion("Advanced Settings", open=False): with gr.Column(): with gr.Row(): cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5) steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28) with gr.Row(): width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024) height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) with gr.Row(): randomize_seed = gr.Checkbox(True, label="Randomize seed") seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) lora_scale = gr.Slider(label="LoRA Scale", minimum=-3, maximum=3, step=0.01, value=0.95) with gr.Accordion("External LoRA", open=True): with gr.Column(): lora_repo_json = gr.JSON(value=[{}] * num_loras, visible=False) lora_repo = [None] * num_loras lora_weights = [None] * num_loras lora_trigger = [None] * num_loras lora_wt = [None] * num_loras lora_info = [None] * num_loras lora_copy = [None] * num_loras lora_md = [None] * num_loras lora_num = [None] * num_loras with gr.Row(): for i in range(num_loras): with gr.Column(): lora_repo[i] = gr.Dropdown(label=f"LoRA {int(i+1)} Repo", choices=get_all_lora_tupled_list(), info="Input LoRA Repo ID", value="", allow_custom_value=True) with gr.Row(): lora_weights[i] = gr.Dropdown(label=f"LoRA {int(i+1)} Filename", choices=[], info="Optional", value="", allow_custom_value=True) lora_trigger[i] = gr.Textbox(label=f"LoRA {int(i+1)} Trigger Prompt", lines=1, max_lines=4, value="") lora_wt[i] = gr.Slider(label=f"LoRA {int(i+1)} Scale", minimum=-3, maximum=3, step=0.01, value=1.00) with gr.Row(): lora_info[i] = gr.Textbox(label="", info="Example of prompt:", value="", show_copy_button=True, interactive=False, visible=False) lora_copy[i] = gr.Button(value="Copy example to prompt", visible=False) lora_md[i] = gr.Markdown(value="", visible=False) lora_num[i] = gr.Number(i, visible=False) with gr.Accordion("From URL", open=True, visible=True): with gr.Row(): lora_search_civitai_query = gr.Textbox(label="Query", placeholder="flux", lines=1) lora_search_civitai_submit = gr.Button("Search on Civitai") lora_search_civitai_basemodel = gr.CheckboxGroup(label="Search LoRA for", choices=["Flux.1 D", "Flux.1 S"], value=["Flux.1 D", "Flux.1 S"]) with gr.Row(): lora_search_civitai_json = gr.JSON(value={}, visible=False) lora_search_civitai_desc = gr.Markdown(value="", visible=False) lora_search_civitai_result = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False) lora_download_url = gr.Textbox(label="URL", placeholder="http://...my_lora_url.safetensors", lines=1) with gr.Row(): lora_download = [None] * num_loras for i in range(num_loras): lora_download[i] = gr.Button(f"Get and set LoRA to {int(i+1)}") with gr.Accordion("ControlNet (🚧Under construction...🚧)", open=False): with gr.Column(): cn_on = gr.Checkbox(False, label="Use ControlNet") cn_mode = [None] * num_cns cn_scale = [None] * num_cns cn_image = [None] * num_cns cn_image_ref = [None] * num_cns cn_res = [None] * num_cns cn_num = [None] * num_cns with gr.Row(): for i in range(num_cns): with gr.Column(): with gr.Row(): cn_mode[i] = gr.Dropdown(label=f"ControlNet {int(i+1)} Mode", choices=get_control_union_mode(), value=get_control_union_mode()[0], allow_custom_value=False) cn_scale[i] = gr.Slider(label=f"ControlNet {int(i+1)} Weight", minimum=0.0, maximum=1.0, step=0.01, value=0.75) cn_res[i] = gr.Slider(label=f"ControlNet {int(i+1)} Preprocess resolution", minimum=128, maximum=512, value=384, step=1) cn_num[i] = gr.Number(i, visible=False) with gr.Row(): cn_image_ref[i] = gr.Image(label="Image Reference", type="pil", format="png", height=256, sources=["upload", "clipboard"], show_share_button=False) cn_image[i] = gr.Image(label="Control Image", type="pil", format="png", height=256, show_share_button=False, interactive=False) gallery.select( update_selection, inputs=[width, height], outputs=[prompt, selected_info, selected_index, width, height], queue=False, show_api=False, ) custom_lora.input( add_custom_lora, inputs=[custom_lora], outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt], queue=False, show_api=False, ) custom_lora_button.click( remove_custom_lora, outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora], queue=False, show_api=False, ) gr.on( triggers=[generate_button.click, prompt.submit], fn=change_base_model, inputs=[model_name, cn_on], outputs=[result], queue=False, show_api=False, ).success( fn=run_lora, inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, lora_repo_json, cn_on], outputs=[result, seed, progress_bar], queue=True, show_api=True, ) deselect_lora_button.click(deselect_lora, None, [prompt, selected_info, selected_index, width, height], queue=False, show_api=False) gr.on( triggers=[model_name.change, cn_on.change], fn=preload_base_model, inputs=[model_name, cn_on], outputs=[result], queue=True, show_api=False, ).then(get_t2i_model_info, [model_name], [model_info], queue=False, show_api=False) prompt_enhance.click(enhance_prompt, [prompt], [prompt], queue=False, show_api=False) gr.on( triggers=[lora_search_civitai_submit.click, lora_search_civitai_query.submit], fn=search_civitai_lora, inputs=[lora_search_civitai_query, lora_search_civitai_basemodel], outputs=[lora_search_civitai_result, lora_search_civitai_desc, lora_search_civitai_submit, lora_search_civitai_query], scroll_to_output=True, queue=True, show_api=False, ) lora_search_civitai_json.change(search_civitai_lora_json, [lora_search_civitai_query, lora_search_civitai_basemodel], [lora_search_civitai_json], queue=True, show_api=True) # fn for api lora_search_civitai_result.change(select_civitai_lora, [lora_search_civitai_result], [lora_download_url, lora_search_civitai_desc], scroll_to_output=True, queue=False, show_api=False) for i, l in enumerate(lora_repo): deselect_lora_button.click(lambda: ("", 1.0), None, [lora_repo[i], lora_wt[i]], queue=False, show_api=False) gr.on( triggers=[lora_download[i].click], fn=download_my_lora, inputs=[lora_download_url, lora_repo[i]], outputs=[lora_repo[i]], scroll_to_output=True, queue=True, show_api=False, ) gr.on( triggers=[lora_repo[i].change, lora_wt[i].change], fn=update_loras, inputs=[prompt, lora_repo[i], lora_wt[i]], outputs=[prompt, lora_repo[i], lora_wt[i], lora_info[i], lora_md[i]], queue=False, trigger_mode="once", show_api=False, ).success(get_repo_safetensors, [lora_repo[i]], [lora_weights[i]], queue=False, show_api=False ).success(apply_lora_prompt, [lora_info[i]], [lora_trigger[i]], queue=False, show_api=False ).success(compose_lora_json, [lora_repo_json, lora_num[i], lora_repo[i], lora_wt[i], lora_weights[i], lora_trigger[i]], [lora_repo_json], queue=False, show_api=False) for i, m in enumerate(cn_mode): gr.on( triggers=[cn_mode[i].change, cn_scale[i].change], fn=set_control_union_mode, inputs=[cn_num[i], cn_mode[i], cn_scale[i]], outputs=[cn_on], queue=True, show_api=False, ).success(set_control_union_image, [cn_num[i], cn_mode[i], cn_image_ref[i], height, width, cn_res[i]], [cn_image[i]], queue=False, show_api=False) cn_image_ref[i].upload(set_control_union_image, [cn_num[i], cn_mode[i], cn_image_ref[i], height, width, cn_res[i]], [cn_image[i]], queue=False, show_api=False) tagger_generate_from_image.click(lambda: ("", "", ""), None, [v2_series, v2_character, prompt], queue=False, show_api=False, ).success( predict_tags_wd, [tagger_image, prompt, tagger_algorithms, tagger_general_threshold, tagger_character_threshold], [v2_series, v2_character, prompt, v2_copy], show_api=False, ).success(predict_tags_fl2_flux, [tagger_image, prompt, tagger_algorithms], [prompt], show_api=False, ).success(compose_prompt_to_copy, [v2_character, v2_series, prompt], [prompt], queue=False, show_api=False) with gr.Tab("FLUX Prompt Generator"): from prompt import (PromptGenerator, HuggingFaceInferenceNode, florence_caption, ARTFORM, PHOTO_TYPE, ROLES, HAIRSTYLES, LIGHTING, COMPOSITION, POSE, BACKGROUND, PHOTOGRAPHY_STYLES, DEVICE, PHOTOGRAPHER, ARTIST, DIGITAL_ARTFORM, PLACE, FEMALE_DEFAULT_TAGS, MALE_DEFAULT_TAGS, FEMALE_BODY_TYPES, MALE_BODY_TYPES, FEMALE_CLOTHING, MALE_CLOTHING, FEMALE_ADDITIONAL_DETAILS, MALE_ADDITIONAL_DETAILS, pg_title) prompt_generator = PromptGenerator() huggingface_node = HuggingFaceInferenceNode() gr.HTML(pg_title) with gr.Row(): with gr.Column(scale=2): with gr.Accordion("Basic Settings"): pg_custom = gr.Textbox(label="Custom Input Prompt (optional)") pg_subject = gr.Textbox(label="Subject (optional)") pg_gender = gr.Radio(["female", "male"], label="Gender", value="female") # Add the radio button for global option selection pg_global_option = gr.Radio( ["Disabled", "Random", "No Figure Rand"], label="Set all options to:", value="Disabled" ) with gr.Accordion("Artform and Photo Type", open=False): pg_artform = gr.Dropdown(["disabled", "random"] + ARTFORM, label="Artform", value="disabled") pg_photo_type = gr.Dropdown(["disabled", "random"] + PHOTO_TYPE, label="Photo Type", value="disabled") with gr.Accordion("Character Details", open=False): pg_body_types = gr.Dropdown(["disabled", "random"] + FEMALE_BODY_TYPES + MALE_BODY_TYPES, label="Body Types", value="disabled") pg_default_tags = gr.Dropdown(["disabled", "random"] + FEMALE_DEFAULT_TAGS + MALE_DEFAULT_TAGS, label="Default Tags", value="disabled") pg_roles = gr.Dropdown(["disabled", "random"] + ROLES, label="Roles", value="disabled") pg_hairstyles = gr.Dropdown(["disabled", "random"] + HAIRSTYLES, label="Hairstyles", value="disabled") pg_clothing = gr.Dropdown(["disabled", "random"] + FEMALE_CLOTHING + MALE_CLOTHING, label="Clothing", value="disabled") with gr.Accordion("Scene Details", open=False): pg_place = gr.Dropdown(["disabled", "random"] + PLACE, label="Place", value="disabled") pg_lighting = gr.Dropdown(["disabled", "random"] + LIGHTING, label="Lighting", value="disabled") pg_composition = gr.Dropdown(["disabled", "random"] + COMPOSITION, label="Composition", value="disabled") pg_pose = gr.Dropdown(["disabled", "random"] + POSE, label="Pose", value="disabled") pg_background = gr.Dropdown(["disabled", "random"] + BACKGROUND, label="Background", value="disabled") with gr.Accordion("Style and Artist", open=False): pg_additional_details = gr.Dropdown(["disabled", "random"] + FEMALE_ADDITIONAL_DETAILS + MALE_ADDITIONAL_DETAILS, label="Additional Details", value="disabled") pg_photography_styles = gr.Dropdown(["disabled", "random"] + PHOTOGRAPHY_STYLES, label="Photography Styles", value="disabled") pg_device = gr.Dropdown(["disabled", "random"] + DEVICE, label="Device", value="disabled") pg_photographer = gr.Dropdown(["disabled", "random"] + PHOTOGRAPHER, label="Photographer", value="disabled") pg_artist = gr.Dropdown(["disabled", "random"] + ARTIST, label="Artist", value="disabled") pg_digital_artform = gr.Dropdown(["disabled", "random"] + DIGITAL_ARTFORM, label="Digital Artform", value="disabled") pg_generate_button = gr.Button("Generate Prompt") with gr.Column(scale=2): with gr.Accordion("Image and Caption", open=False): pg_input_image = gr.Image(label="Input Image (optional)") pg_caption_output = gr.Textbox(label="Generated Caption", lines=3) pg_create_caption_button = gr.Button("Create Caption") pg_add_caption_button = gr.Button("Add Caption to Prompt") with gr.Accordion("Prompt Generation", open=True): pg_output = gr.Textbox(label="Generated Prompt / Input Text", lines=4) pg_t5xxl_output = gr.Textbox(label="T5XXL Output", visible=True) pg_clip_l_output = gr.Textbox(label="CLIP L Output", visible=True) pg_clip_g_output = gr.Textbox(label="CLIP G Output", visible=True) with gr.Column(scale=2): with gr.Accordion("Prompt Generation with LLM", open=False): pg_happy_talk = gr.Checkbox(label="Happy Talk", value=True) pg_compress = gr.Checkbox(label="Compress", value=True) pg_compression_level = gr.Radio(["soft", "medium", "hard"], label="Compression Level", value="hard") pg_poster = gr.Checkbox(label="Poster", value=False) pg_custom_base_prompt = gr.Textbox(label="Custom Base Prompt", lines=5) pg_generate_text_button = gr.Button("Generate Prompt with LLM (Llama 3.1 70B)") pg_text_output = gr.Textbox(label="Generated Text", lines=10) description_ui() def create_caption(image): if image is not None: return florence_caption(image) return "" pg_create_caption_button.click( create_caption, inputs=[pg_input_image], outputs=[pg_caption_output] ) def generate_prompt_with_dynamic_seed(*args): # Generate a new random seed dynamic_seed = random.randint(0, 1000000) # Call the generate_prompt function with the dynamic seed result = prompt_generator.generate_prompt(dynamic_seed, *args) # Return the result along with the used seed return [dynamic_seed] + list(result) pg_generate_button.click( generate_prompt_with_dynamic_seed, inputs=[pg_custom, pg_subject, pg_gender, pg_artform, pg_photo_type, pg_body_types, pg_default_tags, pg_roles, pg_hairstyles, pg_additional_details, pg_photography_styles, pg_device, pg_photographer, pg_artist, pg_digital_artform, pg_place, pg_lighting, pg_clothing, pg_composition, pg_pose, pg_background, pg_input_image], outputs=[gr.Number(label="Used Seed", visible=False), pg_output, gr.Number(visible=False), pg_t5xxl_output, pg_clip_l_output, pg_clip_g_output] ) # pg_add_caption_button.click( prompt_generator.add_caption_to_prompt, inputs=[pg_output, pg_caption_output], outputs=[pg_output] ) pg_generate_text_button.click( huggingface_node.generate, inputs=[pg_output, pg_happy_talk, pg_compress, pg_compression_level, pg_poster, pg_custom_base_prompt], outputs=pg_text_output ) def update_all_options(choice): updates = {} if choice == "Disabled": for dropdown in [ pg_artform, pg_photo_type, pg_body_types, pg_default_tags, pg_roles, pg_hairstyles, pg_clothing, pg_place, pg_lighting, pg_composition, pg_pose, pg_background, pg_additional_details, pg_photography_styles, pg_device, pg_photographer, pg_artist, pg_digital_artform ]: updates[dropdown] = gr.update(value="disabled") elif choice == "Random": for dropdown in [ pg_artform, pg_photo_type, pg_body_types, pg_default_tags, pg_roles, pg_hairstyles, pg_clothing, pg_place, pg_lighting, pg_composition, pg_pose, pg_background, pg_additional_details, pg_photography_styles, pg_device, pg_photographer, pg_artist, pg_digital_artform ]: updates[dropdown] = gr.update(value="random") else: # No Figure Random for dropdown in [pg_photo_type, pg_body_types, pg_default_tags, pg_roles, pg_hairstyles, pg_clothing, pg_pose, pg_additional_details]: updates[dropdown] = gr.update(value="disabled") for dropdown in [pg_artform, pg_place, pg_lighting, pg_composition, pg_background, pg_photography_styles, pg_device, pg_photographer, pg_artist, pg_digital_artform]: updates[dropdown] = gr.update(value="random") return updates pg_global_option.change( update_all_options, inputs=[pg_global_option], outputs=[ pg_artform, pg_photo_type, pg_body_types, pg_default_tags, pg_roles, pg_hairstyles, pg_clothing, pg_place, pg_lighting, pg_composition, pg_pose, pg_background, pg_additional_details, pg_photography_styles, pg_device, pg_photographer, pg_artist, pg_digital_artform ] ) app.queue() app.launch()