Spaces:
Runtime error
Runtime error
import spaces | |
def dummy_gpu(): | |
pass | |
import gradio as gr | |
import torch | |
from pathlib import Path | |
from diffusers import FluxPipeline, FluxTransformer2DModel | |
from huggingface_hub import hf_hub_download, HfApi | |
IS_TURBO = False | |
TEMP_DIR = "./temp" | |
repo_id = "camenduru/FLUX.1-dev-diffusers" | |
#repo_id = "black-forest-labs/FLUX.1-schnell" # if schnell | |
#repo_id = "aoxo/flux.1dev-abliteratedv2" # if dev.abl | |
dtype = torch.bfloat16 | |
#cp = hf_hub_download("John6666/flux1-backup-202502", "ultrarealFineTune_v1.safetensors", repo_type="dataset") | |
cp = hf_hub_download("John6666/flux1-backup-202502", "jibMixFlux_v8AccentueightNSFW.safetensors", repo_type="dataset") | |
transformer = FluxTransformer2DModel.from_single_file(cp, subfolder="transformer", torch_dtype=dtype, config=repo_id) | |
pipe = FluxPipeline.from_pretrained(repo_id, transformer=transformer, torch_dtype=dtype) | |
if IS_TURBO: | |
pipe.to("cuda") | |
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd") | |
pipe.set_adapters(["hyper-sd"], adapter_weights=[0.125]) | |
pipe.fuse_lora() | |
pipe.unload_lora_weights() | |
pipe.to("cpu") | |
def upload_model(repo_id: str="", token: str="", progress=gr.Progress(track_tqdm=True)): | |
if not token: return "Token not found." | |
pipe.save_pretrained(TEMP_DIR) | |
api = HfApi(token=token if token else False) | |
api.create_repo(repo_id=repo_id, token=token, private=True, exist_ok=True) | |
api.upload_folder(repo_id=repo_id, repo_type="model", folder_path=TEMP_DIR, path_in_repo=".") | |
api.upload_file(repo_id=repo_id, repo_type="model", path_or_fileobj=cp, path_in_repo=Path(cp).name) | |
return "Converted." | |
with gr.Blocks() as demo: | |
repo_id = gr.Textbox(label="Repo ID", value="") | |
hf_token = gr.Textbox(label="Your HF write token", value="") | |
run_button = gr.Button("Submit", variant="primary") | |
info_md = gr.Markdown("<br><br><br>") | |
run_button.click(upload_model, [repo_id, hf_token], [info_md]) | |
demo.launch() | |