import spaces @spaces.GPU def dummy_gpu(): pass import gradio as gr import torch from pathlib import Path from diffusers import FluxPipeline, FluxTransformer2DModel from huggingface_hub import hf_hub_download, HfApi IS_TURBO = False TEMP_DIR = "./temp" repo_id = "camenduru/FLUX.1-dev-diffusers" #repo_id = "black-forest-labs/FLUX.1-schnell" # if schnell #repo_id = "aoxo/flux.1dev-abliteratedv2" # if dev.abl dtype = torch.bfloat16 #cp = hf_hub_download("John6666/flux1-backup-202502", "ultrarealFineTune_v1.safetensors", repo_type="dataset") cp = hf_hub_download("John6666/flux1-backup-202502", "jibMixFlux_v8AccentueightNSFW.safetensors", repo_type="dataset") transformer = FluxTransformer2DModel.from_single_file(cp, subfolder="transformer", torch_dtype=dtype, config=repo_id) pipe = FluxPipeline.from_pretrained(repo_id, transformer=transformer, torch_dtype=dtype) if IS_TURBO: pipe.to("cuda") pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd") pipe.set_adapters(["hyper-sd"], adapter_weights=[0.125]) pipe.fuse_lora() pipe.unload_lora_weights() pipe.to("cpu") def upload_model(repo_id: str="", token: str="", progress=gr.Progress(track_tqdm=True)): if not token: return "Token not found." pipe.save_pretrained(TEMP_DIR) api = HfApi(token=token if token else False) api.create_repo(repo_id=repo_id, token=token, private=True, exist_ok=True) api.upload_folder(repo_id=repo_id, repo_type="model", folder_path=TEMP_DIR, path_in_repo=".") api.upload_file(repo_id=repo_id, repo_type="model", path_or_fileobj=cp, path_in_repo=Path(cp).name) return "Converted." with gr.Blocks() as demo: repo_id = gr.Textbox(label="Repo ID", value="") hf_token = gr.Textbox(label="Your HF write token", value="") run_button = gr.Button("Submit", variant="primary") info_md = gr.Markdown("


") run_button.click(upload_model, [repo_id, hf_token], [info_md]) demo.launch()