John6666's picture
Upload 9 files
0e95c75 verified
import torch
from pathlib import Path
from utils import get_download_file
from stkey import read_safetensors_key
try:
from diffusers import BitsAndBytesConfig
is_nf4 = True
except Exception:
is_nf4 = False
DTYPE_DEFAULT = "default"
DTYPE_DICT = {
"fp16": torch.float16,
"bf16": torch.bfloat16,
"fp32": torch.float32,
"fp8": torch.float8_e4m3fn,
}
#QTYPES = ["NF4"] if is_nf4 else []
QTYPES = []
def get_dtypes():
return list(DTYPE_DICT.keys()) + [DTYPE_DEFAULT] + QTYPES
def get_dtype(dtype: str):
if dtype in set(QTYPES): return torch.bfloat16
return DTYPE_DICT.get(dtype, torch.float16)
from diffusers import (
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
HeunDiscreteScheduler,
LMSDiscreteScheduler,
DDIMScheduler,
DEISMultistepScheduler,
UniPCMultistepScheduler,
LCMScheduler,
PNDMScheduler,
KDPM2AncestralDiscreteScheduler,
DPMSolverSDEScheduler,
EDMDPMSolverMultistepScheduler,
DDPMScheduler,
EDMEulerScheduler,
TCDScheduler,
)
SCHEDULER_CONFIG_MAP = {
"DPM++ 2M": (DPMSolverMultistepScheduler, {"algorithm_type": "dpmsolver++", "use_karras_sigmas": False}),
"DPM++ 2M Karras": (DPMSolverMultistepScheduler, {"algorithm_type": "dpmsolver++", "use_karras_sigmas": True}),
"DPM++ 2M SDE": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False, "algorithm_type": "sde-dpmsolver++"}),
"DPM++ 2M SDE Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True, "algorithm_type": "sde-dpmsolver++"}),
"DPM++ 2S": (DPMSolverSinglestepScheduler, {"algorithm_type": "dpmsolver++", "use_karras_sigmas": False}),
"DPM++ 2S Karras": (DPMSolverSinglestepScheduler, {"algorithm_type": "dpmsolver++", "use_karras_sigmas": True}),
"DPM++ 1S": (DPMSolverMultistepScheduler, {"algorithm_type": "dpmsolver++", "solver_order": 1}),
"DPM++ 1S Karras": (DPMSolverMultistepScheduler, {"algorithm_type": "dpmsolver++", "solver_order": 1, "use_karras_sigmas": True}),
"DPM++ 3M": (DPMSolverMultistepScheduler, {"algorithm_type": "dpmsolver++", "solver_order": 3}),
"DPM++ 3M Karras": (DPMSolverMultistepScheduler, {"algorithm_type": "dpmsolver++", "solver_order": 3, "use_karras_sigmas": True}),
"DPM 3M": (DPMSolverMultistepScheduler, {"algorithm_type": "dpmsolver", "final_sigmas_type": "sigma_min", "solver_order": 3}),
"DPM++ SDE": (DPMSolverSDEScheduler, {"use_karras_sigmas": False}),
"DPM++ SDE Karras": (DPMSolverSDEScheduler, {"use_karras_sigmas": True}),
"DPM2": (KDPM2DiscreteScheduler, {}),
"DPM2 Karras": (KDPM2DiscreteScheduler, {"use_karras_sigmas": True}),
"DPM2 a": (KDPM2AncestralDiscreteScheduler, {}),
"DPM2 a Karras": (KDPM2AncestralDiscreteScheduler, {"use_karras_sigmas": True}),
"Euler": (EulerDiscreteScheduler, {}),
"Euler a": (EulerAncestralDiscreteScheduler, {}),
"Euler trailing": (EulerDiscreteScheduler, {"timestep_spacing": "trailing", "prediction_type": "sample"}),
"Euler a trailing": (EulerAncestralDiscreteScheduler, {"timestep_spacing": "trailing"}),
"Heun": (HeunDiscreteScheduler, {}),
"Heun Karras": (HeunDiscreteScheduler, {"use_karras_sigmas": True}),
"LMS": (LMSDiscreteScheduler, {}),
"LMS Karras": (LMSDiscreteScheduler, {"use_karras_sigmas": True}),
"DDIM": (DDIMScheduler, {}),
"DDIM trailing": (DDIMScheduler, {"timestep_spacing": "trailing"}),
"DEIS": (DEISMultistepScheduler, {}),
"UniPC": (UniPCMultistepScheduler, {}),
"UniPC Karras": (UniPCMultistepScheduler, {"use_karras_sigmas": True}),
"PNDM": (PNDMScheduler, {}),
"Euler EDM": (EDMEulerScheduler, {}),
"Euler EDM Karras": (EDMEulerScheduler, {"use_karras_sigmas": True}),
"DPM++ 2M EDM": (EDMDPMSolverMultistepScheduler, {"solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}),
"DPM++ 2M EDM Karras": (EDMDPMSolverMultistepScheduler, {"use_karras_sigmas": True, "solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}),
"DDPM": (DDPMScheduler, {}),
"DPM++ 2M Lu": (DPMSolverMultistepScheduler, {"algorithm_type": "dpmsolver++", "use_lu_lambdas": True}),
"DPM++ 2M Ef": (DPMSolverMultistepScheduler, {"algorithm_type": "dpmsolver++", "euler_at_final": True}),
"DPM++ 2M SDE Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True, "algorithm_type": "sde-dpmsolver++"}),
"DPM++ 2M SDE Ef": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++", "euler_at_final": True}),
"LCM": (LCMScheduler, {}),
"TCD": (TCDScheduler, {}),
"LCM trailing": (LCMScheduler, {"timestep_spacing": "trailing"}),
"TCD trailing": (TCDScheduler, {"timestep_spacing": "trailing"}),
"LCM Auto-Loader": (LCMScheduler, {}),
"TCD Auto-Loader": (TCDScheduler, {}),
"EDM": (EDMDPMSolverMultistepScheduler, {}),
"EDM Karras": (EDMDPMSolverMultistepScheduler, {"use_karras_sigmas": True}),
"Euler (V-Prediction)": (EulerDiscreteScheduler, {"prediction_type": "v_prediction", "rescale_betas_zero_snr": True}),
"Euler a (V-Prediction)": (EulerAncestralDiscreteScheduler, {"prediction_type": "v_prediction", "rescale_betas_zero_snr": True}),
"Euler EDM (V-Prediction)": (EDMEulerScheduler, {"prediction_type": "v_prediction"}),
"Euler EDM Karras (V-Prediction)": (EDMEulerScheduler, {"use_karras_sigmas": True, "prediction_type": "v_prediction"}),
"DPM++ 2M EDM (V-Prediction)": (EDMDPMSolverMultistepScheduler, {"solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++", "prediction_type": "v_prediction"}),
"DPM++ 2M EDM Karras (V-Prediction)": (EDMDPMSolverMultistepScheduler, {"use_karras_sigmas": True, "solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++", "prediction_type": "v_prediction"}),
"EDM (V-Prediction)": (EDMDPMSolverMultistepScheduler, {"prediction_type": "v_prediction"}),
"EDM Karras (V-Prediction)": (EDMDPMSolverMultistepScheduler, {"use_karras_sigmas": True, "prediction_type": "v_prediction"}),
}
def get_scheduler_config(name: str):
if not name in SCHEDULER_CONFIG_MAP.keys(): return SCHEDULER_CONFIG_MAP["Euler a"]
return SCHEDULER_CONFIG_MAP[name]
def fuse_loras(pipe, lora_dict: dict, temp_dir: str, civitai_key: str="", dkwargs: dict={}):
if not lora_dict or not isinstance(lora_dict, dict): return pipe
a_list = []
w_list = []
for k, v in lora_dict.items():
if not k: continue
new_lora_file = get_download_file(temp_dir, k, civitai_key)
if not new_lora_file or not Path(new_lora_file).exists():
print(f"LoRA file not found: {k}")
continue
w_name = Path(new_lora_file).name
a_name = Path(new_lora_file).stem
pipe.load_lora_weights(new_lora_file, weight_name=w_name, adapter_name=a_name, low_cpu_mem_usage=False, **dkwargs)
a_list.append(a_name)
w_list.append(v)
if Path(new_lora_file).exists(): Path(new_lora_file).unlink()
if len(a_list) == 0: return pipe
pipe.set_adapters(a_list, adapter_weights=w_list)
pipe.fuse_lora(adapter_names=a_list, lora_scale=1.0)
pipe.unload_lora_weights()
return pipe
MODEL_TYPE_KEY = {
"model.diffusion_model.output_blocks.1.1.norm.bias": "SDXL",
"model.diffusion_model.input_blocks.11.0.out_layers.3.weight": "SD 1.5",
"double_blocks.0.img_attn.norm.key_norm.scale": "FLUX",
"model.diffusion_model.double_blocks.0.img_attn.norm.key_norm.scale": "FLUX",
"model.diffusion_model.joint_blocks.9.x_block.attn.ln_k.weight": "SD 3.5",
}
def get_model_type_from_key(path: str):
default = "SDXL"
try:
keys = read_safetensors_key(path)
for k, v in MODEL_TYPE_KEY.items():
if k in set(keys):
print(f"Model type is {v}.")
return v
print("Model type could not be identified.")
except Exception:
return default
return default
def get_process_dtype(dtype: str, model_type: str):
if dtype in set(["fp8"] + QTYPES): return torch.bfloat16 if model_type in ["FLUX", "SD 3.5"] else torch.float16
return DTYPE_DICT.get(dtype, torch.float16)