import gradio as gr from datasets import load_dataset from PIL import Image from huggingface_hub import InferenceClient import re import os import requests import uuid import base64 import random from share_btn import community_icon_html, loading_icon_html, share_js MODELS = ["stabilityai/stable-diffusion-2-1", "friedrichor/stable-diffusion-2-1-realistic", "stabilityai/stable-diffusion-2-1-base", "stabilityai/stable-diffusion-2"] OUTPUT_PATH = ".output" os.makedirs(OUTPUT_PATH, exist_ok=True) #word_list_dataset = load_dataset("stabilityai/word-list", data_files="list.txt") #word_list = word_list_dataset["train"]['text'] #is_gpu_busy = False def infer(prompt, negative, scale, model_id=MODELS[0], hf_token="", images=[]): #global is_gpu_busy #for filter in word_list: # if re.search(rf"\b{filter}\b", prompt): # print(filter) # print(prompt) # raise gr.Error("Unsafe content found. Please try again with different prompts.") #images = [] #url = os.getenv('JAX_BACKEND_URL') #print(url) if images is None: images = [] if not hf_token: hf_token = os.getenv("HF_TOKEN", None) client = InferenceClient(model=model_id, token=hf_token) for i in range(4): image = client.text_to_image(prompt=prompt, negative_prompt=negative, guidance_scale=scale, num_inference_steps=45, seed=gen_random_seed()) file_path = f"{OUTPUT_PATH}/{uuid.uuid4()}.jpg" image.save(file_path) if image: images.append(file_path) yield images #payload = {'prompt': prompt, 'negative_prompt': negative, 'guidance_scale': scale} #images_request = requests.post(url, json = payload) #for image in images_request.json()["images"]: # file_path = f"{uuid.uuid4()}.jpg" # with open(file_path, "wb") as f: # f.write(base64.b64decode(image)) # images.append(file_path) #return images def gen_random_seed(): return random.randint(0, 2147483647) def infer_advance(prompt, negative, scale, width, height, steps, seed, samples, model_id=MODELS[0], hf_token="", images=[]): if images is None: images = [] if not hf_token: hf_token = os.getenv("HF_TOKEN", None) client = InferenceClient(model=model_id, token=hf_token) for i in range(samples): image = client.text_to_image(prompt=prompt, negative_prompt=negative, width=width, height=height, guidance_scale=scale, num_inference_steps=steps, seed=seed if i==0 else gen_random_seed()) file_path = f"{OUTPUT_PATH}/{uuid.uuid4()}.jpg" image.save(file_path) if image: images.append(file_path) yield images css = """ .gradio-container { max-width: 768px !important; } .gradio-container { font-family: 'IBM Plex Sans', sans-serif; } .gr-button { color: white; border-color: black; background: black; } input[type='range'] { accent-color: black; } .dark input[type='range'] { accent-color: #dfdfdf; } .container { max-width: 730px; margin: auto; } #gallery { min-height: 22rem; margin-bottom: 15px; margin-left: auto; margin-right: auto; border-bottom-right-radius: .5rem !important; border-bottom-left-radius: .5rem !important; } #gallery>div>.h-full { min-height: 20rem; } .details:hover { text-decoration: underline; } .gr-button { white-space: nowrap; } .gr-button:focus { border-color: rgb(147 197 253 / var(--tw-border-opacity)); outline: none; box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); --tw-border-opacity: 1; --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); --tw-ring-opacity: .5; } #advanced-btn { font-size: .7rem !important; line-height: 19px; margin-top: 12px; margin-bottom: 12px; padding: 2px 8px; border-radius: 14px !important; } #advanced-options { display: none; margin-bottom: 20px; } .footer { margin-bottom: 45px; margin-top: 35px; text-align: center; border-bottom: 1px solid #e5e5e5; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } .acknowledgments h4{ margin: 1.25em 0 .25em 0; font-weight: bold; font-size: 115%; } .animate-spin { animation: spin 1s linear infinite; } @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; margin-top: 10px; margin-left: auto; } #share-btn-container .styler{ background-color: #000000; } #share-btn { all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0; } #share-btn * { all: unset; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } .gr-form{ flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0; } #prompt-container{ gap: 0; } #prompt-text-input, #negative-prompt-text-input{padding: .45rem 0.625rem} #component-16{border-top-width: 1px!important;margin-top: 1em} .image_duplication{position: absolute; width: 100px; left: 50px} button{height: 100%} .info { align-items: center; text-align: center; } """ block = gr.Blocks(css=css) examples = [ [ 'A high tech solarpunk utopia in the Amazon rainforest', 'low quality', 9 ], [ 'A pikachu fine dining with a view to the Eiffel Tower', 'low quality', 9 ], [ 'A mecha robot in a favela in expressionist style', 'low quality, 3d, photorealistic', 9 ], [ 'an insect robot preparing a delicious meal', 'low quality, illustration', 9 ], [ "A small cabin on top of a snowy mountain in the style of Disney, artstation", 'low quality, ugly', 9 ], ] with block: gr.HTML( """
Stable Diffusion 2.1 is the latest text-to-image model from StabilityAI. Access Stable Diffusion 1 Space here
For faster generation and API
access you can try
DreamStudio Beta.