|
import argparse
|
|
from pathlib import Path
|
|
import os
|
|
import torch
|
|
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
|
|
|
|
|
|
|
|
def list_sub(a, b):
|
|
return [e for e in a if e not in b]
|
|
|
|
|
|
def is_repo_name(s):
|
|
import re
|
|
return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)
|
|
|
|
|
|
def download_thing(directory, url, civitai_api_key=""):
|
|
url = url.strip()
|
|
if "drive.google.com" in url:
|
|
original_dir = os.getcwd()
|
|
os.chdir(directory)
|
|
os.system(f"gdown --fuzzy {url}")
|
|
os.chdir(original_dir)
|
|
elif "huggingface.co" in url:
|
|
url = url.replace("?download=true", "")
|
|
if "/blob/" in url:
|
|
url = url.replace("/blob/", "/resolve/")
|
|
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
|
|
else:
|
|
os.system (f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
|
|
elif "civitai.com" in url:
|
|
if "?" in url:
|
|
url = url.split("?")[0]
|
|
if civitai_api_key:
|
|
url = url + f"?token={civitai_api_key}"
|
|
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
|
else:
|
|
print("You need an API key to download Civitai models.")
|
|
else:
|
|
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
|
|
|
|
|
def get_local_model_list(dir_path):
|
|
model_list = []
|
|
valid_extensions = ('.safetensors')
|
|
for file in Path(dir_path).glob("*"):
|
|
if file.suffix in valid_extensions:
|
|
file_path = str(Path(f"{dir_path}/{file.name}"))
|
|
model_list.append(file_path)
|
|
return model_list
|
|
|
|
|
|
def get_download_file(temp_dir, url, civitai_key):
|
|
if not "http" in url and is_repo_name(url) and not Path(url).exists():
|
|
print(f"Use HF Repo: {url}")
|
|
new_file = url
|
|
elif not "http" in url and Path(url).exists():
|
|
print(f"Use local file: {url}")
|
|
new_file = url
|
|
elif Path(f"{temp_dir}/{url.split('/')[-1]}").exists():
|
|
print(f"File to download alreday exists: {url}")
|
|
new_file = f"{temp_dir}/{url.split('/')[-1]}"
|
|
else:
|
|
print(f"Start downloading: {url}")
|
|
before = get_local_model_list(temp_dir)
|
|
try:
|
|
download_thing(temp_dir, url.strip(), civitai_key)
|
|
except Exception:
|
|
print(f"Download failed: {url}")
|
|
return ""
|
|
after = get_local_model_list(temp_dir)
|
|
new_file = list_sub(after, before)[0] if list_sub(after, before) else ""
|
|
if not new_file:
|
|
print(f"Download failed: {url}")
|
|
return ""
|
|
print(f"Download completed: {url}")
|
|
return new_file
|
|
|
|
|
|
from diffusers import (
|
|
DPMSolverMultistepScheduler,
|
|
DPMSolverSinglestepScheduler,
|
|
KDPM2DiscreteScheduler,
|
|
EulerDiscreteScheduler,
|
|
EulerAncestralDiscreteScheduler,
|
|
HeunDiscreteScheduler,
|
|
LMSDiscreteScheduler,
|
|
DDIMScheduler,
|
|
DEISMultistepScheduler,
|
|
UniPCMultistepScheduler,
|
|
LCMScheduler,
|
|
PNDMScheduler,
|
|
KDPM2AncestralDiscreteScheduler,
|
|
DPMSolverSDEScheduler,
|
|
EDMDPMSolverMultistepScheduler,
|
|
DDPMScheduler,
|
|
EDMEulerScheduler,
|
|
TCDScheduler,
|
|
)
|
|
|
|
|
|
SCHEDULER_CONFIG_MAP = {
|
|
"DPM++ 2M": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False}),
|
|
"DPM++ 2M Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True}),
|
|
"DPM++ 2M SDE": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False, "algorithm_type": "sde-dpmsolver++"}),
|
|
"DPM++ 2M SDE Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True, "algorithm_type": "sde-dpmsolver++"}),
|
|
"DPM++ 2S": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": False}),
|
|
"DPM++ 2S Karras": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": True}),
|
|
"DPM++ 1S": (DPMSolverMultistepScheduler, {"solver_order": 1}),
|
|
"DPM++ 1S Karras": (DPMSolverMultistepScheduler, {"solver_order": 1, "use_karras_sigmas": True}),
|
|
"DPM++ 3M": (DPMSolverMultistepScheduler, {"solver_order": 3}),
|
|
"DPM++ 3M Karras": (DPMSolverMultistepScheduler, {"solver_order": 3, "use_karras_sigmas": True}),
|
|
"DPM++ SDE": (DPMSolverSDEScheduler, {"use_karras_sigmas": False}),
|
|
"DPM++ SDE Karras": (DPMSolverSDEScheduler, {"use_karras_sigmas": True}),
|
|
"DPM2": (KDPM2DiscreteScheduler, {}),
|
|
"DPM2 Karras": (KDPM2DiscreteScheduler, {"use_karras_sigmas": True}),
|
|
"DPM2 a": (KDPM2AncestralDiscreteScheduler, {}),
|
|
"DPM2 a Karras": (KDPM2AncestralDiscreteScheduler, {"use_karras_sigmas": True}),
|
|
"Euler": (EulerDiscreteScheduler, {}),
|
|
"Euler a": (EulerAncestralDiscreteScheduler, {}),
|
|
"Euler trailing": (EulerDiscreteScheduler, {"timestep_spacing": "trailing", "prediction_type": "sample"}),
|
|
"Euler a trailing": (EulerAncestralDiscreteScheduler, {"timestep_spacing": "trailing"}),
|
|
"Heun": (HeunDiscreteScheduler, {}),
|
|
"Heun Karras": (HeunDiscreteScheduler, {"use_karras_sigmas": True}),
|
|
"LMS": (LMSDiscreteScheduler, {}),
|
|
"LMS Karras": (LMSDiscreteScheduler, {"use_karras_sigmas": True}),
|
|
"DDIM": (DDIMScheduler, {}),
|
|
"DDIM trailing": (DDIMScheduler, {"timestep_spacing": "trailing"}),
|
|
"DEIS": (DEISMultistepScheduler, {}),
|
|
"UniPC": (UniPCMultistepScheduler, {}),
|
|
"UniPC Karras": (UniPCMultistepScheduler, {"use_karras_sigmas": True}),
|
|
"PNDM": (PNDMScheduler, {}),
|
|
"Euler EDM": (EDMEulerScheduler, {}),
|
|
"Euler EDM Karras": (EDMEulerScheduler, {"use_karras_sigmas": True}),
|
|
"DPM++ 2M EDM": (EDMDPMSolverMultistepScheduler, {"solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}),
|
|
"DPM++ 2M EDM Karras": (EDMDPMSolverMultistepScheduler, {"use_karras_sigmas": True, "solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}),
|
|
"DDPM": (DDPMScheduler, {}),
|
|
|
|
"DPM++ 2M Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True}),
|
|
"DPM++ 2M Ef": (DPMSolverMultistepScheduler, {"euler_at_final": True}),
|
|
"DPM++ 2M SDE Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True, "algorithm_type": "sde-dpmsolver++"}),
|
|
"DPM++ 2M SDE Ef": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++", "euler_at_final": True}),
|
|
|
|
"LCM": (LCMScheduler, {}),
|
|
"TCD": (TCDScheduler, {}),
|
|
"LCM trailing": (LCMScheduler, {"timestep_spacing": "trailing"}),
|
|
"TCD trailing": (TCDScheduler, {"timestep_spacing": "trailing"}),
|
|
"LCM Auto-Loader": (LCMScheduler, {}),
|
|
"TCD Auto-Loader": (TCDScheduler, {}),
|
|
}
|
|
|
|
|
|
def get_scheduler_config(name):
|
|
if not name in SCHEDULER_CONFIG_MAP.keys(): return SCHEDULER_CONFIG_MAP["Euler a"]
|
|
return SCHEDULER_CONFIG_MAP[name]
|
|
|
|
|
|
def save_readme_md(dir, url):
|
|
orig_url = ""
|
|
orig_name = ""
|
|
if is_repo_name(url):
|
|
orig_name = url
|
|
orig_url = f"https://huggingface.co/{url}/"
|
|
elif "http" in url:
|
|
orig_name = url
|
|
orig_url = url
|
|
if orig_name and orig_url:
|
|
md = f"""---
|
|
license: other
|
|
language:
|
|
- en
|
|
library_name: diffusers
|
|
pipeline_tag: text-to-image
|
|
tags:
|
|
- text-to-image
|
|
---
|
|
Converted from [{orig_name}]({orig_url}).
|
|
"""
|
|
else:
|
|
md = f"""---
|
|
license: other
|
|
language:
|
|
- en
|
|
library_name: diffusers
|
|
pipeline_tag: text-to-image
|
|
tags:
|
|
- text-to-image
|
|
---
|
|
"""
|
|
path = str(Path(dir, "README.md"))
|
|
with open(path, mode='w', encoding="utf-8") as f:
|
|
f.write(md)
|
|
|
|
|
|
def fuse_loras(pipe, civitai_key="", lora_dict={}, temp_dir="."):
|
|
if not lora_dict or not isinstance(lora_dict, dict): return pipe
|
|
a_list = []
|
|
w_list = []
|
|
for k, v in lora_dict.items():
|
|
if not k: continue
|
|
new_lora_file = get_download_file(temp_dir, k, civitai_key)
|
|
if not new_lora_file or not Path(new_lora_file).exists():
|
|
print(f"LoRA not found: {k}")
|
|
continue
|
|
w_name = Path(new_lora_file).name
|
|
a_name = Path(new_lora_file).stem
|
|
pipe.load_lora_weights(new_lora_file, weight_name = w_name, adapter_name = a_name)
|
|
a_list.append(a_name)
|
|
w_list.append(v)
|
|
if not a_list: return pipe
|
|
pipe.set_adapters(a_list, adapter_weights=w_list)
|
|
pipe.fuse_lora(adapter_names=a_list, lora_scale=1.0)
|
|
pipe.unload_lora_weights()
|
|
return pipe
|
|
|
|
|
|
def convert_url_to_diffusers_sdxl(url, civitai_key="", half=True, vae=None, scheduler="Euler a", lora_dict={}):
|
|
temp_dir = "."
|
|
new_file = get_download_file(temp_dir, url, civitai_key)
|
|
if not new_file:
|
|
print(f"Not found: {url}")
|
|
return
|
|
new_repo_name = Path(new_file).stem.replace(" ", "_").replace(",", "_").replace(".", "_")
|
|
|
|
pipe = None
|
|
if is_repo_name(url):
|
|
if half:
|
|
pipe = StableDiffusionXLPipeline.from_pretrained(new_file, use_safetensors=True, torch_dtype=torch.float16)
|
|
else:
|
|
pipe = StableDiffusionXLPipeline.from_pretrained(new_file, use_safetensors=True)
|
|
else:
|
|
if half:
|
|
pipe = StableDiffusionXLPipeline.from_single_file(new_file, use_safetensors=True, torch_dtype=torch.float16)
|
|
else:
|
|
pipe = StableDiffusionXLPipeline.from_single_file(new_file, use_safetensors=True)
|
|
|
|
new_vae_file = ""
|
|
if vae:
|
|
if is_repo_name(vae):
|
|
if half:
|
|
pipe.vae = AutoencoderKL.from_pretrained(vae, torch_dtype=torch.float16)
|
|
else:
|
|
pipe.vae = AutoencoderKL.from_pretrained(vae)
|
|
else:
|
|
new_vae_file = get_download_file(temp_dir, vae, civitai_key)
|
|
if new_vae_file and half:
|
|
pipe.vae = AutoencoderKL.from_single_file(new_vae_file, torch_dtype=torch.float16)
|
|
elif new_vae_file:
|
|
pipe.vae = AutoencoderKL.from_single_file(new_vae_file)
|
|
|
|
pipe = fuse_loras(pipe, lora_dict, temp_dir, civitai_key)
|
|
|
|
sconf = get_scheduler_config(scheduler)
|
|
pipe.scheduler = sconf[0].from_config(pipe.scheduler.config, **sconf[1])
|
|
|
|
if half:
|
|
pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
|
|
else:
|
|
pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
|
|
|
|
if Path(new_repo_name).exists():
|
|
save_readme_md(new_repo_name, url)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument("--url", default=None, type=str, required=True, help="URL of the model to convert.")
|
|
parser.add_argument("--half", default=True, help="Save weights in half precision.")
|
|
parser.add_argument("--scheduler", default="Euler a", type=str, choices=list(SCHEDULER_CONFIG_MAP.keys()), required=False, help="Scheduler name to use.")
|
|
parser.add_argument("--vae", default=None, type=str, required=False, help="URL of the VAE to use.")
|
|
parser.add_argument("--civitai_key", default=None, type=str, required=False, help="Civitai API Key (If you want to download file from Civitai).")
|
|
parser.add_argument("--lora1", default=None, type=str, required=False, help="URL of the LoRA to use.")
|
|
parser.add_argument("--lora1s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora1.")
|
|
parser.add_argument("--lora2", default=None, type=str, required=False, help="URL of the LoRA to use.")
|
|
parser.add_argument("--lora2s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora2.")
|
|
parser.add_argument("--lora3", default=None, type=str, required=False, help="URL of the LoRA to use.")
|
|
parser.add_argument("--lora3s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora3.")
|
|
parser.add_argument("--lora4", default=None, type=str, required=False, help="URL of the LoRA to use.")
|
|
parser.add_argument("--lora4s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora4.")
|
|
parser.add_argument("--lora5", default=None, type=str, required=False, help="URL of the LoRA to use.")
|
|
parser.add_argument("--lora5s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora5.")
|
|
parser.add_argument("--loras", default=None, type=str, required=False, help="Folder of the LoRA to use.")
|
|
|
|
args = parser.parse_args()
|
|
assert args.url is not None, "Must provide a URL!"
|
|
|
|
lora_dict = {args.lora1: args.lora1s, args.lora2: args.lora2s, args.lora3: args.lora3s, args.lora4: args.lora4s, args.lora5: args.lora5s}
|
|
|
|
if args.loras and Path(args.loras).exists():
|
|
for p in Path(args.loras).glob('**/*.safetensors'):
|
|
lora_dict[str(p)] = 1.0
|
|
|
|
convert_url_to_diffusers_sdxl(args.url, args.civitai_key, args.half, args.vae, args.scheduler, lora_dict)
|
|
|
|
|
|
|
|
|
|
|