|
import argparse
|
|
from pathlib import Path
|
|
import os
|
|
import torch
|
|
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
|
|
from transformers import CLIPTokenizer, CLIPTextModel
|
|
import gradio as gr
|
|
from huggingface_hub import hf_hub_download, HfApi
|
|
import urllib.parse
|
|
import re
|
|
import shutil
|
|
import gc
|
|
|
|
|
|
|
|
def list_sub(a, b):
|
|
return [e for e in a if e not in b]
|
|
|
|
|
|
def is_repo_name(s):
|
|
return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)
|
|
|
|
|
|
def split_hf_url(url: str):
|
|
try:
|
|
s = list(re.findall(r'^(?:https?://huggingface.co/)(?:(datasets)/)?(.+?/.+?)/\w+?/.+?/(?:(.+)/)?(.+?.\w+)(?:\?download=true)?$', url)[0])
|
|
if len(s) < 4: return "", "", "", ""
|
|
repo_id = s[1]
|
|
repo_type = "dataset" if s[0] == "datasets" else "model"
|
|
subfolder = urllib.parse.unquote(s[2]) if s[2] else None
|
|
filename = urllib.parse.unquote(s[3])
|
|
return repo_id, filename, subfolder, repo_type
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
|
|
def download_hf_file(directory, url, hf_token="", progress=gr.Progress(track_tqdm=True)):
|
|
repo_id, filename, subfolder, repo_type = split_hf_url(url)
|
|
try:
|
|
if subfolder is not None: hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder, repo_type=repo_type, local_dir=directory, token=hf_token)
|
|
else: hf_hub_download(repo_id=repo_id, filename=filename, repo_type=repo_type, local_dir=directory, token=hf_token)
|
|
except Exception as e:
|
|
print(f"Failed to download: {e}")
|
|
|
|
|
|
def download_thing(directory, url, civitai_api_key="", hf_token="", progress=gr.Progress(track_tqdm=True)):
|
|
url = url.strip()
|
|
if "drive.google.com" in url:
|
|
original_dir = os.getcwd()
|
|
os.chdir(directory)
|
|
os.system(f"gdown --fuzzy {url}")
|
|
os.chdir(original_dir)
|
|
elif "huggingface.co" in url:
|
|
url = url.replace("?download=true", "")
|
|
if "/blob/" in url:
|
|
url = url.replace("/blob/", "/resolve/")
|
|
user_header = f'"Authorization: Bearer {hf_token}"'
|
|
if hf_token:
|
|
download_hf_file(directory, url, hf_token)
|
|
|
|
else:
|
|
os.system(f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
|
|
elif "civitai.com" in url:
|
|
if "?" in url:
|
|
url = url.split("?")[0]
|
|
if civitai_api_key:
|
|
url = url + f"?token={civitai_api_key}"
|
|
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
|
else:
|
|
print("You need an API key to download Civitai models.")
|
|
else:
|
|
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
|
|
|
|
|
def get_local_model_list(dir_path):
|
|
model_list = []
|
|
valid_extensions = ('.safetensors')
|
|
for file in Path(dir_path).glob("**/*.*"):
|
|
if file.is_file() and file.suffix in valid_extensions:
|
|
file_path = str(file)
|
|
model_list.append(file_path)
|
|
return model_list
|
|
|
|
|
|
def get_download_file(temp_dir, url, civitai_key, hf_token, progress=gr.Progress(track_tqdm=True)):
|
|
if not "http" in url and is_repo_name(url) and not Path(url).exists():
|
|
print(f"Use HF Repo: {url}")
|
|
new_file = url
|
|
elif not "http" in url and Path(url).exists():
|
|
print(f"Use local file: {url}")
|
|
new_file = url
|
|
elif Path(f"{temp_dir}/{url.split('/')[-1]}").exists():
|
|
print(f"File to download alreday exists: {url}")
|
|
new_file = f"{temp_dir}/{url.split('/')[-1]}"
|
|
else:
|
|
print(f"Start downloading: {url}")
|
|
before = get_local_model_list(temp_dir)
|
|
try:
|
|
download_thing(temp_dir, url.strip(), civitai_key, hf_token)
|
|
except Exception:
|
|
print(f"Download failed: {url}")
|
|
return ""
|
|
after = get_local_model_list(temp_dir)
|
|
new_file = list_sub(after, before)[0] if list_sub(after, before) else ""
|
|
if not new_file:
|
|
print(f"Download failed: {url}")
|
|
return ""
|
|
print(f"Download completed: {url}")
|
|
return new_file
|
|
|
|
|
|
from diffusers import (
|
|
DPMSolverMultistepScheduler,
|
|
DPMSolverSinglestepScheduler,
|
|
KDPM2DiscreteScheduler,
|
|
EulerDiscreteScheduler,
|
|
EulerAncestralDiscreteScheduler,
|
|
HeunDiscreteScheduler,
|
|
LMSDiscreteScheduler,
|
|
DDIMScheduler,
|
|
DEISMultistepScheduler,
|
|
UniPCMultistepScheduler,
|
|
LCMScheduler,
|
|
PNDMScheduler,
|
|
KDPM2AncestralDiscreteScheduler,
|
|
DPMSolverSDEScheduler,
|
|
EDMDPMSolverMultistepScheduler,
|
|
DDPMScheduler,
|
|
EDMEulerScheduler,
|
|
TCDScheduler,
|
|
)
|
|
|
|
|
|
SCHEDULER_CONFIG_MAP = {
|
|
"DPM++ 2M": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False}),
|
|
"DPM++ 2M Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True}),
|
|
"DPM++ 2M SDE": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False, "algorithm_type": "sde-dpmsolver++"}),
|
|
"DPM++ 2M SDE Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True, "algorithm_type": "sde-dpmsolver++"}),
|
|
"DPM++ 2S": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": False}),
|
|
"DPM++ 2S Karras": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": True}),
|
|
"DPM++ 1S": (DPMSolverMultistepScheduler, {"solver_order": 1}),
|
|
"DPM++ 1S Karras": (DPMSolverMultistepScheduler, {"solver_order": 1, "use_karras_sigmas": True}),
|
|
"DPM++ 3M": (DPMSolverMultistepScheduler, {"solver_order": 3}),
|
|
"DPM++ 3M Karras": (DPMSolverMultistepScheduler, {"solver_order": 3, "use_karras_sigmas": True}),
|
|
"DPM++ SDE": (DPMSolverSDEScheduler, {"use_karras_sigmas": False}),
|
|
"DPM++ SDE Karras": (DPMSolverSDEScheduler, {"use_karras_sigmas": True}),
|
|
"DPM2": (KDPM2DiscreteScheduler, {}),
|
|
"DPM2 Karras": (KDPM2DiscreteScheduler, {"use_karras_sigmas": True}),
|
|
"DPM2 a": (KDPM2AncestralDiscreteScheduler, {}),
|
|
"DPM2 a Karras": (KDPM2AncestralDiscreteScheduler, {"use_karras_sigmas": True}),
|
|
"Euler": (EulerDiscreteScheduler, {}),
|
|
"Euler a": (EulerAncestralDiscreteScheduler, {}),
|
|
"Euler trailing": (EulerDiscreteScheduler, {"timestep_spacing": "trailing", "prediction_type": "sample"}),
|
|
"Euler a trailing": (EulerAncestralDiscreteScheduler, {"timestep_spacing": "trailing"}),
|
|
"Heun": (HeunDiscreteScheduler, {}),
|
|
"Heun Karras": (HeunDiscreteScheduler, {"use_karras_sigmas": True}),
|
|
"LMS": (LMSDiscreteScheduler, {}),
|
|
"LMS Karras": (LMSDiscreteScheduler, {"use_karras_sigmas": True}),
|
|
"DDIM": (DDIMScheduler, {}),
|
|
"DDIM trailing": (DDIMScheduler, {"timestep_spacing": "trailing"}),
|
|
"DEIS": (DEISMultistepScheduler, {}),
|
|
"UniPC": (UniPCMultistepScheduler, {}),
|
|
"UniPC Karras": (UniPCMultistepScheduler, {"use_karras_sigmas": True}),
|
|
"PNDM": (PNDMScheduler, {}),
|
|
"Euler EDM": (EDMEulerScheduler, {}),
|
|
"Euler EDM Karras": (EDMEulerScheduler, {"use_karras_sigmas": True}),
|
|
"DPM++ 2M EDM": (EDMDPMSolverMultistepScheduler, {"solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}),
|
|
"DPM++ 2M EDM Karras": (EDMDPMSolverMultistepScheduler, {"use_karras_sigmas": True, "solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}),
|
|
"DDPM": (DDPMScheduler, {}),
|
|
|
|
"DPM++ 2M Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True}),
|
|
"DPM++ 2M Ef": (DPMSolverMultistepScheduler, {"euler_at_final": True}),
|
|
"DPM++ 2M SDE Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True, "algorithm_type": "sde-dpmsolver++"}),
|
|
"DPM++ 2M SDE Ef": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++", "euler_at_final": True}),
|
|
|
|
"LCM": (LCMScheduler, {}),
|
|
"TCD": (TCDScheduler, {}),
|
|
"LCM trailing": (LCMScheduler, {"timestep_spacing": "trailing"}),
|
|
"TCD trailing": (TCDScheduler, {"timestep_spacing": "trailing"}),
|
|
"LCM Auto-Loader": (LCMScheduler, {}),
|
|
"TCD Auto-Loader": (TCDScheduler, {}),
|
|
}
|
|
|
|
|
|
def get_scheduler_config(name):
|
|
if not name in SCHEDULER_CONFIG_MAP.keys(): return SCHEDULER_CONFIG_MAP["Euler a"]
|
|
return SCHEDULER_CONFIG_MAP[name]
|
|
|
|
|
|
def save_readme_md(dir, url):
|
|
orig_url = ""
|
|
orig_name = ""
|
|
if is_repo_name(url):
|
|
orig_name = url
|
|
orig_url = f"https://huggingface.co/{url}/"
|
|
elif "http" in url:
|
|
orig_name = url
|
|
orig_url = url
|
|
if orig_name and orig_url:
|
|
md = f"""---
|
|
license: other
|
|
language:
|
|
- en
|
|
library_name: diffusers
|
|
pipeline_tag: text-to-image
|
|
tags:
|
|
- text-to-image
|
|
---
|
|
Converted from [{orig_name}]({orig_url}).
|
|
"""
|
|
else:
|
|
md = f"""---
|
|
license: other
|
|
language:
|
|
- en
|
|
library_name: diffusers
|
|
pipeline_tag: text-to-image
|
|
tags:
|
|
- text-to-image
|
|
---
|
|
"""
|
|
path = str(Path(dir, "README.md"))
|
|
with open(path, mode='w', encoding="utf-8") as f:
|
|
f.write(md)
|
|
|
|
|
|
def fuse_loras(pipe, lora_dict={}, temp_dir=".", civitai_key="", hf_token=""):
|
|
if not lora_dict or not isinstance(lora_dict, dict): return pipe
|
|
a_list = []
|
|
w_list = []
|
|
for k, v in lora_dict.items():
|
|
if not k: continue
|
|
new_lora_file = get_download_file(temp_dir, k, civitai_key, hf_token)
|
|
if not new_lora_file or not Path(new_lora_file).exists():
|
|
print(f"LoRA not found: {k}")
|
|
continue
|
|
w_name = Path(new_lora_file).name
|
|
a_name = Path(new_lora_file).stem
|
|
pipe.load_lora_weights(new_lora_file, weight_name = w_name, adapter_name = a_name)
|
|
a_list.append(a_name)
|
|
w_list.append(v)
|
|
if not a_list: return pipe
|
|
pipe.set_adapters(a_list, adapter_weights=w_list)
|
|
pipe.fuse_lora(adapter_names=a_list, lora_scale=1.0)
|
|
pipe.unload_lora_weights()
|
|
return pipe
|
|
|
|
|
|
def convert_url_to_diffusers_sdxl(url, civitai_key="", hf_token="", is_upload_sf=False, half=True, vae=None,
|
|
scheduler="Euler a", lora_dict={}, is_local=True, clip="", progress=gr.Progress(track_tqdm=True)):
|
|
progress(0, desc="Start converting...")
|
|
temp_dir = "."
|
|
new_file = get_download_file(temp_dir, url, civitai_key, hf_token)
|
|
if not new_file:
|
|
print(f"Not found: {url}")
|
|
return ""
|
|
new_repo_name = Path(new_file).stem.replace(" ", "_").replace(",", "_").replace(".", "_")
|
|
|
|
type_kwargs = {}
|
|
kwargs = {}
|
|
if half: type_kwargs["torch_dtype"] = torch.float16
|
|
|
|
new_vae_file = ""
|
|
if vae:
|
|
if is_repo_name(vae): my_vae = AutoencoderKL.from_pretrained(vae, **type_kwargs)
|
|
else:
|
|
new_vae_file = get_download_file(temp_dir, vae, civitai_key, hf_token)
|
|
if new_vae_file: my_vae = AutoencoderKL.from_single_file(new_vae_file, **type_kwargs)
|
|
kwargs["vae"] = my_vae
|
|
|
|
if clip:
|
|
my_tokenizer = CLIPTokenizer.from_pretrained(clip)
|
|
my_text_encoder = CLIPTextModel.from_pretrained(clip, **type_kwargs)
|
|
kwargs["tokenizer"] = my_tokenizer
|
|
kwargs["text_encoder"] = my_text_encoder
|
|
|
|
pipe = None
|
|
if is_repo_name(url): pipe = StableDiffusionXLPipeline.from_pretrained(new_file, use_safetensors=True, **kwargs, **type_kwargs)
|
|
else: pipe = StableDiffusionXLPipeline.from_single_file(new_file, use_safetensors=True, **kwargs, **type_kwargs)
|
|
|
|
pipe = fuse_loras(pipe, lora_dict, temp_dir, civitai_key, hf_token)
|
|
|
|
sconf = get_scheduler_config(scheduler)
|
|
pipe.scheduler = sconf[0].from_config(pipe.scheduler.config, **sconf[1])
|
|
|
|
pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
|
|
|
|
if Path(new_repo_name).exists(): save_readme_md(new_repo_name, url)
|
|
|
|
if not is_local:
|
|
if not is_repo_name(new_file) and is_upload_sf: shutil.move(str(Path(new_file).resolve()), str(Path(new_repo_name, Path(new_file).name).resolve()))
|
|
else: os.remove(new_file)
|
|
del pipe
|
|
torch.cuda.empty_cache()
|
|
gc.collect()
|
|
|
|
progress(1, desc="Converted.")
|
|
return new_repo_name
|
|
|
|
|
|
def is_repo_exists(repo_id, hf_token):
|
|
api = HfApi(token=hf_token)
|
|
try:
|
|
if api.repo_exists(repo_id=repo_id): return True
|
|
else: return False
|
|
except Exception as e:
|
|
print(f"Error: Failed to connect {repo_id}. {e}")
|
|
return True
|
|
|
|
|
|
def create_diffusers_repo(new_repo_id, diffusers_folder, is_private, hf_token, progress=gr.Progress(track_tqdm=True)):
|
|
api = HfApi(token=hf_token)
|
|
try:
|
|
progress(0, desc="Start uploading...")
|
|
api.create_repo(repo_id=new_repo_id, token=hf_token, private=is_private, exist_ok=True)
|
|
for path in Path(diffusers_folder).glob("*"):
|
|
if path.is_dir():
|
|
api.upload_folder(repo_id=new_repo_id, folder_path=str(path), path_in_repo=path.name, token=hf_token)
|
|
elif path.is_file():
|
|
api.upload_file(repo_id=new_repo_id, path_or_fileobj=str(path), path_in_repo=path.name, token=hf_token)
|
|
progress(1, desc="Uploaded.")
|
|
url = f"https://huggingface.co/{new_repo_id}"
|
|
except Exception as e:
|
|
print(f"Error: Failed to upload to {new_repo_id}. {e}")
|
|
return ""
|
|
return url
|
|
|
|
|
|
def convert_url_to_diffusers_repo(dl_url, hf_user, hf_repo, hf_token, civitai_key="", is_private=True, is_overwrite=False, is_upload_sf=False,
|
|
repo_urls=[], half=True, vae=None, clip="", scheduler="Euler a",
|
|
lora1=None, lora1s=1.0, lora2=None, lora2s=1.0, lora3=None, lora3s=1.0,
|
|
lora4=None, lora4s=1.0, lora5=None, lora5s=1.0, progress=gr.Progress(track_tqdm=True)):
|
|
if not civitai_key and os.environ.get("CIVITAI_API_KEY"): civitai_key = os.environ.get("CIVITAI_API_KEY")
|
|
if not hf_token and os.environ.get("HF_TOKEN"): hf_token = os.environ.get("HF_TOKEN")
|
|
if not hf_user and os.environ.get("HF_USER"): hf_user = os.environ.get("HF_USER")
|
|
if not hf_user:
|
|
print(f"Invalid user name: {hf_user}")
|
|
progress(1, desc=f"Invalid user name: {hf_user}")
|
|
return gr.update(value=repo_urls, choices=repo_urls), gr.update(visible=True)
|
|
lora_dict = {lora1: lora1s, lora2: lora2s, lora3: lora3s, lora4: lora4s, lora5: lora5s}
|
|
new_path = convert_url_to_diffusers_sdxl(dl_url, civitai_key, hf_token, is_upload_sf, half, vae, scheduler, lora_dict, False, clip)
|
|
if not new_path: return ""
|
|
new_repo_id = f"{hf_user}/{Path(new_path).stem}"
|
|
if hf_repo != "": new_repo_id = f"{hf_user}/{hf_repo}"
|
|
if not is_repo_name(new_repo_id):
|
|
print(f"Invalid repo name: {new_repo_id}")
|
|
progress(1, desc=f"Invalid repo name: {new_repo_id}")
|
|
return gr.update(value=repo_urls, choices=repo_urls), gr.update(visible=True)
|
|
if not is_overwrite and is_repo_exists(new_repo_id, hf_token):
|
|
print(f"Repo already exists: {new_repo_id}")
|
|
progress(1, desc=f"Repo already exists: {new_repo_id}")
|
|
return gr.update(value=repo_urls, choices=repo_urls), gr.update(visible=True)
|
|
repo_url = create_diffusers_repo(new_repo_id, new_path, is_private, hf_token)
|
|
shutil.rmtree(new_path)
|
|
if not repo_urls: repo_urls = []
|
|
repo_urls.append(repo_url)
|
|
md = "### Your new repo:\n"
|
|
for u in repo_urls:
|
|
md += f"[{str(u).split('/')[-2]}/{str(u).split('/')[-1]}]({str(u)})<br>"
|
|
return gr.update(value=repo_urls, choices=repo_urls), gr.update(value=md)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument("--url", default=None, type=str, required=True, help="URL of the model to convert.")
|
|
parser.add_argument("--half", default=True, help="Save weights in half precision.")
|
|
parser.add_argument("--scheduler", default="Euler a", type=str, choices=list(SCHEDULER_CONFIG_MAP.keys()), required=False, help="Scheduler name to use.")
|
|
parser.add_argument("--vae", default=None, type=str, required=False, help="URL of the VAE to use.")
|
|
parser.add_argument("--civitai_key", default=None, type=str, required=False, help="Civitai API Key (If you want to download file from Civitai).")
|
|
parser.add_argument("--lora1", default=None, type=str, required=False, help="URL of the LoRA to use.")
|
|
parser.add_argument("--lora1s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora1.")
|
|
parser.add_argument("--lora2", default=None, type=str, required=False, help="URL of the LoRA to use.")
|
|
parser.add_argument("--lora2s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora2.")
|
|
parser.add_argument("--lora3", default=None, type=str, required=False, help="URL of the LoRA to use.")
|
|
parser.add_argument("--lora3s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora3.")
|
|
parser.add_argument("--lora4", default=None, type=str, required=False, help="URL of the LoRA to use.")
|
|
parser.add_argument("--lora4s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora4.")
|
|
parser.add_argument("--lora5", default=None, type=str, required=False, help="URL of the LoRA to use.")
|
|
parser.add_argument("--lora5s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora5.")
|
|
parser.add_argument("--loras", default=None, type=str, required=False, help="Folder of the LoRA to use.")
|
|
|
|
args = parser.parse_args()
|
|
assert args.url is not None, "Must provide a URL!"
|
|
|
|
lora_dict = {args.lora1: args.lora1s, args.lora2: args.lora2s, args.lora3: args.lora3s, args.lora4: args.lora4s, args.lora5: args.lora5s}
|
|
|
|
if args.loras and Path(args.loras).exists():
|
|
for p in Path(args.loras).glob('**/*.safetensors'):
|
|
lora_dict[str(p)] = 1.0
|
|
|
|
convert_url_to_diffusers_sdxl(args.url, args.civitai_key, args.half, args.vae, args.scheduler, lora_dict, True)
|
|
|