John6666 commited on
Commit
3b53436
·
verified ·
1 Parent(s): 36bd5b7

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -37
app.py CHANGED
@@ -1,38 +1,50 @@
1
- import os
2
- import gradio as gr
3
- from huggingface_hub import login
4
- from transformers import pipeline
5
-
6
- # Load the gated model
7
- #model_name = "RickyDeSkywalker/TheoremLlama"
8
- #model_name = "unsloth/Llama-3.2-1B-Instruct"
9
- model_name = "internlm/internlm2-math-plus-7b"
10
- HF_TOKEN = os.environ.get("HF_TOKEN")
11
- #login(HF_TOKEN)
12
-
13
- generator = pipeline('text-generation', model=model_name, trust_remote_code=True, token=HF_TOKEN)
14
-
15
- # Function for generating Lean 4 code
16
- def generate_lean4_code(prompt):
17
- result = generator(prompt, max_length=1000, num_return_sequences=1)
18
- return result[0]['generated_text']
19
-
20
- # Gradio Interface
21
- title = "Lean 4 Code Generation with TheoremLlama"
22
- description = "Enter a natural language prompt to generate Lean 4 code."
23
-
24
- interface = gr.Interface(
25
- fn=generate_lean4_code,
26
- inputs=gr.Textbox(
27
- label="Prompt",
28
- placeholder="Prove that the sum of two even numbers is even.",
29
- lines=4
30
- ),
31
- #outputs=gr.Code(label="Generated Lean 4 Code", language="lean"),
32
- outputs=gr.Code(label="Generated Lean 4 Code"),
33
- title=title,
34
- description=description
35
- )
36
-
37
- # Launch the Gradio app
 
 
 
 
 
 
 
 
 
 
 
 
38
  interface.launch(ssr_mode=False)
 
1
+ import os
2
+ import gradio as gr
3
+ from huggingface_hub import login
4
+ from transformers import pipeline
5
+ import torch
6
+ from transformers import AutoTokenizer, AutoModelForCausalLM
7
+
8
+ # Load the gated model
9
+ #model_name = "RickyDeSkywalker/TheoremLlama"
10
+ #model_name = "unsloth/Llama-3.2-1B-Instruct"
11
+ device = "cuda" if torch.cuda.is_available() else "cpu"
12
+ model_name = "internlm/internlm2-math-plus-7b"
13
+ HF_TOKEN = os.environ.get("HF_TOKEN")
14
+ #login(HF_TOKEN)
15
+
16
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
17
+ # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
18
+ model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.float16).eval().to(device)
19
+ model = model.eval()
20
+
21
+ #generator = pipeline('text-generation', model=model_name, trust_remote_code=True, token=HF_TOKEN)
22
+
23
+ # Function for generating Lean 4 code
24
+ @torch.inference_mode()
25
+ def generate_lean4_code(prompt):
26
+ #result = generator(prompt, max_length=1000, num_return_sequences=1)
27
+ #return result[0]['generated_text']
28
+ response, history = model.chat(tokenizer, prompt, history=[], meta_instruction="")
29
+ print(response, history)
30
+ return response
31
+
32
+ # Gradio Interface
33
+ title = "Lean 4 Code Generation with TheoremLlama"
34
+ description = "Enter a natural language prompt to generate Lean 4 code."
35
+
36
+ interface = gr.Interface(
37
+ fn=generate_lean4_code,
38
+ inputs=gr.Textbox(
39
+ label="Prompt",
40
+ placeholder="Prove that the sum of two even numbers is even.",
41
+ lines=4
42
+ ),
43
+ #outputs=gr.Code(label="Generated Lean 4 Code", language="lean"),
44
+ outputs=gr.Code(label="Generated Lean 4 Code"),
45
+ title=title,
46
+ description=description
47
+ )
48
+
49
+ # Launch the Gradio app
50
  interface.launch(ssr_mode=False)