Upload dc.py
Browse files
dc.py
CHANGED
@@ -1,52 +1,33 @@
|
|
1 |
import spaces
|
2 |
import os
|
3 |
from stablepy import Model_Diffusers
|
4 |
-
from constants import (
|
5 |
-
PREPROCESSOR_CONTROLNET,
|
6 |
-
TASK_STABLEPY,
|
7 |
-
TASK_MODEL_LIST,
|
8 |
-
UPSCALER_DICT_GUI,
|
9 |
-
UPSCALER_KEYS,
|
10 |
-
PROMPT_W_OPTIONS,
|
11 |
-
WARNING_MSG_VAE,
|
12 |
-
SDXL_TASK,
|
13 |
-
MODEL_TYPE_TASK,
|
14 |
-
POST_PROCESSING_SAMPLER,
|
15 |
-
|
16 |
-
)
|
17 |
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
|
|
|
18 |
import torch
|
19 |
import re
|
|
|
20 |
from stablepy import (
|
|
|
|
|
|
|
|
|
|
|
21 |
scheduler_names,
|
|
|
22 |
IP_ADAPTERS_SD,
|
23 |
IP_ADAPTERS_SDXL,
|
|
|
|
|
|
|
|
|
24 |
)
|
25 |
import time
|
26 |
from PIL import ImageFile
|
27 |
-
|
28 |
-
get_model_list,
|
29 |
-
extract_parameters,
|
30 |
-
get_model_type,
|
31 |
-
extract_exif_data,
|
32 |
-
create_mask_now,
|
33 |
-
download_diffuser_repo,
|
34 |
-
progress_step_bar,
|
35 |
-
html_template_message,
|
36 |
-
)
|
37 |
-
from datetime import datetime
|
38 |
-
import gradio as gr
|
39 |
-
import logging
|
40 |
-
import diffusers
|
41 |
-
import warnings
|
42 |
-
from stablepy import logger
|
43 |
-
# import urllib.parse
|
44 |
|
45 |
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
46 |
-
# os.environ["PYTORCH_NO_CUDA_MEMORY_CACHING"] = "1"
|
47 |
print(os.getenv("SPACES_ZERO_GPU"))
|
48 |
|
49 |
-
## BEGIN MOD
|
50 |
import gradio as gr
|
51 |
import logging
|
52 |
logging.getLogger("diffusers").setLevel(logging.ERROR)
|
@@ -57,63 +38,205 @@ warnings.filterwarnings(action="ignore", category=FutureWarning, module="diffuse
|
|
57 |
warnings.filterwarnings(action="ignore", category=UserWarning, module="diffusers")
|
58 |
warnings.filterwarnings(action="ignore", category=FutureWarning, module="transformers")
|
59 |
from stablepy import logger
|
60 |
-
logger.setLevel(logging.
|
61 |
|
62 |
from env import (
|
63 |
-
HF_TOKEN,
|
64 |
CIVITAI_API_KEY, HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2,
|
65 |
HF_LORA_ESSENTIAL_PRIVATE_REPO, HF_VAE_PRIVATE_REPO,
|
66 |
HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO,
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
|
|
72 |
from modutils import (to_list, list_uniq, list_sub, get_model_id_list, get_tupled_embed_list,
|
73 |
get_tupled_model_list, get_lora_model_list, download_private_repo, download_things)
|
74 |
|
75 |
# - **Download Models**
|
76 |
-
download_model = ", ".join(
|
77 |
# - **Download VAEs**
|
78 |
-
download_vae = ", ".join(
|
79 |
# - **Download LoRAs**
|
80 |
-
download_lora = ", ".join(
|
81 |
|
82 |
-
#download_private_repo(HF_LORA_ESSENTIAL_PRIVATE_REPO,
|
83 |
-
download_private_repo(HF_VAE_PRIVATE_REPO,
|
84 |
|
85 |
-
load_diffusers_format_model = list_uniq(
|
86 |
## END MOD
|
87 |
|
88 |
# Download stuffs
|
89 |
for url in [url.strip() for url in download_model.split(',')]:
|
90 |
if not os.path.exists(f"./models/{url.split('/')[-1]}"):
|
91 |
-
download_things(
|
92 |
for url in [url.strip() for url in download_vae.split(',')]:
|
93 |
if not os.path.exists(f"./vaes/{url.split('/')[-1]}"):
|
94 |
-
download_things(
|
95 |
for url in [url.strip() for url in download_lora.split(',')]:
|
96 |
if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
|
97 |
-
download_things(
|
98 |
|
99 |
# Download Embeddings
|
100 |
-
for url_embed in
|
101 |
if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"):
|
102 |
-
download_things(
|
103 |
|
104 |
# Build list models
|
105 |
-
embed_list = get_model_list(
|
106 |
-
model_list = get_model_list(
|
107 |
model_list = load_diffusers_format_model + model_list
|
108 |
-
|
109 |
## BEGIN MOD
|
110 |
lora_model_list = get_lora_model_list()
|
111 |
-
vae_model_list = get_model_list(
|
112 |
vae_model_list.insert(0, "None")
|
113 |
|
114 |
-
#download_private_repo(HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO,
|
115 |
-
#download_private_repo(HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO,
|
116 |
-
embed_sdxl_list = get_model_list(
|
117 |
|
118 |
def get_embed_list(pipeline_name):
|
119 |
return get_tupled_embed_list(embed_sdxl_list if pipeline_name == "StableDiffusionXLPipeline" else embed_list)
|
@@ -121,13 +244,99 @@ def get_embed_list(pipeline_name):
|
|
121 |
|
122 |
print('\033[33m🏁 Download and listing of valid models completed.\033[0m')
|
123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
## BEGIN MOD
|
125 |
class GuiSD:
|
126 |
-
def __init__(self
|
127 |
self.model = None
|
128 |
-
|
129 |
-
|
130 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
def infer_short(self, model, pipe_params, progress=gr.Progress(track_tqdm=True)):
|
133 |
#progress(0, desc="Start inference...")
|
@@ -141,86 +350,31 @@ class GuiSD:
|
|
141 |
return img
|
142 |
|
143 |
def load_new_model(self, model_name, vae_model, task, progress=gr.Progress(track_tqdm=True)):
|
144 |
-
vae_model = vae_model if vae_model != "None" else None
|
145 |
-
model_type = get_model_type(model_name)
|
146 |
-
dtype_model = torch.bfloat16 if model_type == "FLUX" else torch.float16
|
147 |
-
|
148 |
-
if not os.path.exists(model_name):
|
149 |
-
_ = download_diffuser_repo(
|
150 |
-
repo_name=model_name,
|
151 |
-
model_type=model_type,
|
152 |
-
revision="main",
|
153 |
-
token=True,
|
154 |
-
)
|
155 |
-
|
156 |
-
for i in range(68):
|
157 |
-
if not self.status_loading:
|
158 |
-
self.status_loading = True
|
159 |
-
if i > 0:
|
160 |
-
time.sleep(self.sleep_loading)
|
161 |
-
print("Previous model ops...")
|
162 |
-
break
|
163 |
-
time.sleep(0.5)
|
164 |
-
print(f"Waiting queue {i}")
|
165 |
-
#yield "Waiting queue"
|
166 |
-
|
167 |
-
self.status_loading = True
|
168 |
|
169 |
#yield f"Loading model: {model_name}"
|
|
|
|
|
|
|
170 |
|
171 |
if vae_model:
|
172 |
vae_type = "SDXL" if "sdxl" in vae_model.lower() else "SD 1.5"
|
173 |
if model_type != vae_type:
|
174 |
-
gr.Warning(
|
175 |
-
|
176 |
-
print("Loading model...")
|
177 |
-
|
178 |
-
try:
|
179 |
-
start_time = time.time()
|
180 |
-
|
181 |
-
if self.model is None:
|
182 |
-
self.model = Model_Diffusers(
|
183 |
-
base_model_id=model_name,
|
184 |
-
task_name=TASK_STABLEPY[task],
|
185 |
-
vae_model=vae_model,
|
186 |
-
type_model_precision=dtype_model,
|
187 |
-
retain_task_model_in_cache=False,
|
188 |
-
device="cpu",
|
189 |
-
)
|
190 |
-
else:
|
191 |
-
|
192 |
-
if self.model.base_model_id != model_name:
|
193 |
-
load_now_time = datetime.now()
|
194 |
-
elapsed_time = (load_now_time - self.last_load).total_seconds()
|
195 |
-
|
196 |
-
if elapsed_time <= 8:
|
197 |
-
print("Waiting for the previous model's time ops...")
|
198 |
-
time.sleep(8-elapsed_time)
|
199 |
-
|
200 |
-
self.model.device = torch.device("cpu")
|
201 |
-
self.model.load_pipe(
|
202 |
-
model_name,
|
203 |
-
task_name=TASK_STABLEPY[task],
|
204 |
-
vae_model=vae_model,
|
205 |
-
type_model_precision=dtype_model,
|
206 |
-
retain_task_model_in_cache=False,
|
207 |
-
)
|
208 |
-
|
209 |
-
end_time = time.time()
|
210 |
-
self.sleep_loading = max(min(int(end_time - start_time), 10), 4)
|
211 |
-
except Exception as e:
|
212 |
-
self.last_load = datetime.now()
|
213 |
-
self.status_loading = False
|
214 |
-
self.sleep_loading = 4
|
215 |
-
raise e
|
216 |
-
|
217 |
-
self.last_load = datetime.now()
|
218 |
-
self.status_loading = False
|
219 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
#yield f"Model loaded: {model_name}"
|
221 |
|
222 |
#@spaces.GPU
|
223 |
-
|
224 |
def generate_pipeline(
|
225 |
self,
|
226 |
prompt,
|
@@ -325,24 +479,23 @@ class GuiSD:
|
|
325 |
mode_ip2,
|
326 |
scale_ip2,
|
327 |
pag_scale,
|
|
|
328 |
):
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
vae_model = vae_model if vae_model != "None" else None
|
333 |
loras_list = [lora1, lora2, lora3, lora4, lora5]
|
334 |
vae_msg = f"VAE: {vae_model}" if vae_model else ""
|
335 |
msg_lora = ""
|
336 |
|
|
|
|
|
337 |
## BEGIN MOD
|
338 |
-
loras_list = [s if s else "None" for s in loras_list]
|
339 |
prompt, neg_prompt = insert_model_recom_prompt(prompt, neg_prompt, model_name)
|
340 |
global lora_model_list
|
341 |
lora_model_list = get_lora_model_list()
|
342 |
## END MOD
|
343 |
|
344 |
-
print("Config model:", model_name, vae_model, loras_list)
|
345 |
-
|
346 |
task = TASK_STABLEPY[task]
|
347 |
|
348 |
params_ip_img = []
|
@@ -365,9 +518,6 @@ class GuiSD:
|
|
365 |
params_ip_mode.append(modeip)
|
366 |
params_ip_scale.append(scaleip)
|
367 |
|
368 |
-
concurrency = 5
|
369 |
-
self.model.stream_config(concurrency=concurrency, latent_resize_by=1, vae_decoding=False)
|
370 |
-
|
371 |
if task != "txt2img" and not image_control:
|
372 |
raise ValueError("No control image found: To use this function, you have to upload an image in 'Image ControlNet/Inpaint/Img2img'")
|
373 |
|
@@ -439,15 +589,15 @@ class GuiSD:
|
|
439 |
"high_threshold": high_threshold,
|
440 |
"value_threshold": value_threshold,
|
441 |
"distance_threshold": distance_threshold,
|
442 |
-
"lora_A": lora1 if lora1 != "None" else None,
|
443 |
"lora_scale_A": lora_scale1,
|
444 |
-
"lora_B": lora2 if lora2 != "None" else None,
|
445 |
"lora_scale_B": lora_scale2,
|
446 |
-
"lora_C": lora3 if lora3 != "None" else None,
|
447 |
"lora_scale_C": lora_scale3,
|
448 |
-
"lora_D": lora4 if lora4 != "None" else None,
|
449 |
"lora_scale_D": lora_scale4,
|
450 |
-
"lora_E": lora5 if lora5 != "None" else None,
|
451 |
"lora_scale_E": lora_scale5,
|
452 |
## BEGIN MOD
|
453 |
"textual_inversion": get_embed_list(self.model.class_name) if textual_inversion else [],
|
@@ -497,59 +647,18 @@ class GuiSD:
|
|
497 |
}
|
498 |
|
499 |
self.model.device = torch.device("cuda:0")
|
500 |
-
if hasattr(self.model.pipe, "transformer") and loras_list != ["None"] * 5:
|
501 |
self.model.pipe.transformer.to(self.model.device)
|
502 |
print("transformer to cuda")
|
503 |
|
504 |
-
#
|
505 |
-
|
506 |
-
actual_progress = 0
|
507 |
-
info_images = gr.update()
|
508 |
-
for img, seed, image_path, metadata in self.model(**pipe_params):
|
509 |
-
info_state = progress_step_bar(actual_progress, steps)
|
510 |
-
actual_progress += concurrency
|
511 |
-
if image_path:
|
512 |
-
info_images = f"Seeds: {str(seed)}"
|
513 |
-
if vae_msg:
|
514 |
-
info_images = info_images + "<br>" + vae_msg
|
515 |
-
|
516 |
-
if "Cannot copy out of meta tensor; no data!" in self.model.last_lora_error:
|
517 |
-
msg_ram = "Unable to process the LoRAs due to high RAM usage; please try again later."
|
518 |
-
print(msg_ram)
|
519 |
-
msg_lora += f"<br>{msg_ram}"
|
520 |
-
|
521 |
-
for status, lora in zip(self.model.lora_status, self.model.lora_memory):
|
522 |
-
if status:
|
523 |
-
msg_lora += f"<br>Loaded: {lora}"
|
524 |
-
elif status is not None:
|
525 |
-
msg_lora += f"<br>Error with: {lora}"
|
526 |
-
|
527 |
-
if msg_lora:
|
528 |
-
info_images += msg_lora
|
529 |
-
|
530 |
-
info_images = info_images + "<br>" + "GENERATION DATA:<br>" + metadata[0].replace("\n", "<br>") + "<br>-------<br>"
|
531 |
-
|
532 |
-
download_links = "<br>".join(
|
533 |
-
[
|
534 |
-
f'<a href="{path.replace("/images/", "/file=/home/user/app/images/")}" download="{os.path.basename(path)}">Download Image {i + 1}</a>'
|
535 |
-
for i, path in enumerate(image_path)
|
536 |
-
]
|
537 |
-
)
|
538 |
-
if save_generated_images:
|
539 |
-
info_images += f"<br>{download_links}"
|
540 |
|
541 |
-
|
542 |
-
|
543 |
## END MOD
|
544 |
|
545 |
-
info_state = "COMPLETE"
|
546 |
-
|
547 |
-
#yield info_state, img, info_images
|
548 |
-
return info_state, img, info_images
|
549 |
-
|
550 |
def dynamic_gpu_duration(func, duration, *args):
|
551 |
|
552 |
-
@torch.inference_mode()
|
553 |
@spaces.GPU(duration=duration)
|
554 |
def wrapped_func():
|
555 |
return func(*args)
|
@@ -569,7 +678,7 @@ def sd_gen_generate_pipeline(*args):
|
|
569 |
load_lora_cpu = args[-3]
|
570 |
generation_args = args[:-3]
|
571 |
lora_list = [
|
572 |
-
None if item == "None" or item == "" else item
|
573 |
for item in [args[7], args[9], args[11], args[13], args[15]]
|
574 |
]
|
575 |
lora_status = [None] * 5
|
@@ -579,7 +688,7 @@ def sd_gen_generate_pipeline(*args):
|
|
579 |
msg_load_lora = "Updating LoRAs in CPU (Slow but saves GPU usage)..."
|
580 |
|
581 |
#if lora_list != sd_gen.model.lora_memory and lora_list != [None] * 5:
|
582 |
-
# yield
|
583 |
|
584 |
# Load lora in CPU
|
585 |
if load_lora_cpu:
|
@@ -605,16 +714,14 @@ def sd_gen_generate_pipeline(*args):
|
|
605 |
)
|
606 |
gr.Info(f"LoRAs in cache: {lora_cache_msg}")
|
607 |
|
608 |
-
|
609 |
-
if verbose_arg:
|
610 |
gr.Info(msg_request)
|
611 |
print(msg_request)
|
612 |
-
|
|
|
613 |
|
614 |
start_time = time.time()
|
615 |
|
616 |
-
# yield from sd_gen.generate_pipeline(*generation_args)
|
617 |
-
#yield from dynamic_gpu_duration(
|
618 |
return dynamic_gpu_duration(
|
619 |
sd_gen.generate_pipeline,
|
620 |
gpu_duration_arg,
|
@@ -622,19 +729,31 @@ def sd_gen_generate_pipeline(*args):
|
|
622 |
)
|
623 |
|
624 |
end_time = time.time()
|
625 |
-
execution_time = end_time - start_time
|
626 |
-
msg_task_complete = (
|
627 |
-
f"GPU task complete in: {int(round(execution_time, 0) + 1)} seconds"
|
628 |
-
)
|
629 |
|
630 |
if verbose_arg:
|
|
|
|
|
|
|
|
|
631 |
gr.Info(msg_task_complete)
|
632 |
print(msg_task_complete)
|
633 |
|
634 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
635 |
|
|
|
636 |
|
637 |
-
|
|
|
|
|
|
|
638 |
def esrgan_upscale(image, upscaler_name, upscaler_size):
|
639 |
if image is None: return None
|
640 |
|
@@ -656,21 +775,18 @@ def esrgan_upscale(image, upscaler_name, upscaler_size):
|
|
656 |
|
657 |
return image_path
|
658 |
|
659 |
-
|
660 |
dynamic_gpu_duration.zerogpu = True
|
661 |
sd_gen_generate_pipeline.zerogpu = True
|
662 |
-
sd_gen = GuiSD()
|
663 |
-
|
664 |
|
665 |
from pathlib import Path
|
666 |
from PIL import Image
|
667 |
import random, json
|
668 |
from modutils import (safe_float, escape_lora_basename, to_lora_key, to_lora_path,
|
669 |
get_local_model_list, get_private_lora_model_lists, get_valid_lora_name,
|
670 |
-
get_valid_lora_path, get_valid_lora_wt, get_lora_info, CIVITAI_SORT, CIVITAI_PERIOD,
|
671 |
-
normalize_prompt_list, get_civitai_info, search_lora_on_civitai, translate_to_en
|
672 |
-
|
673 |
|
|
|
674 |
#@spaces.GPU
|
675 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
|
676 |
model_name = load_diffusers_format_model[0], lora1 = None, lora1_wt = 1.0, lora2 = None, lora2_wt = 1.0,
|
@@ -685,7 +801,7 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
|
|
685 |
gpu_duration = 59
|
686 |
|
687 |
images: list[tuple[PIL.Image.Image, str | None]] = []
|
688 |
-
|
689 |
progress(0, desc="Preparing...")
|
690 |
|
691 |
if randomize_seed:
|
@@ -712,7 +828,7 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
|
|
712 |
sd_gen.load_new_model(model_name, vae, TASK_MODEL_LIST[0])
|
713 |
progress(1, desc="Model loaded.")
|
714 |
progress(0, desc="Starting Inference...")
|
715 |
-
|
716 |
guidance_scale, True, generator, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt,
|
717 |
lora4, lora4_wt, lora5, lora5_wt, sampler,
|
718 |
height, width, model_name, vae, TASK_MODEL_LIST[0], None, "Canny", 512, 1024,
|
@@ -892,14 +1008,14 @@ def update_lora_dict(path: str):
|
|
892 |
def download_lora(dl_urls: str):
|
893 |
global loras_url_to_path_dict
|
894 |
dl_path = ""
|
895 |
-
before = get_local_model_list(
|
896 |
urls = []
|
897 |
for url in [url.strip() for url in dl_urls.split(',')]:
|
898 |
-
local_path = f"{
|
899 |
if not Path(local_path).exists():
|
900 |
-
download_things(
|
901 |
urls.append(url)
|
902 |
-
after = get_local_model_list(
|
903 |
new_files = list_sub(after, before)
|
904 |
i = 0
|
905 |
for file in new_files:
|
|
|
1 |
import spaces
|
2 |
import os
|
3 |
from stablepy import Model_Diffusers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
|
5 |
+
from stablepy.diffusers_vanilla.constants import FLUX_CN_UNION_MODES
|
6 |
import torch
|
7 |
import re
|
8 |
+
from huggingface_hub import HfApi
|
9 |
from stablepy import (
|
10 |
+
CONTROLNET_MODEL_IDS,
|
11 |
+
VALID_TASKS,
|
12 |
+
T2I_PREPROCESSOR_NAME,
|
13 |
+
FLASH_LORA,
|
14 |
+
SCHEDULER_CONFIG_MAP,
|
15 |
scheduler_names,
|
16 |
+
IP_ADAPTER_MODELS,
|
17 |
IP_ADAPTERS_SD,
|
18 |
IP_ADAPTERS_SDXL,
|
19 |
+
REPO_IMAGE_ENCODER,
|
20 |
+
ALL_PROMPT_WEIGHT_OPTIONS,
|
21 |
+
SD15_TASKS,
|
22 |
+
SDXL_TASKS,
|
23 |
)
|
24 |
import time
|
25 |
from PIL import ImageFile
|
26 |
+
#import urllib.parse
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
|
|
29 |
print(os.getenv("SPACES_ZERO_GPU"))
|
30 |
|
|
|
31 |
import gradio as gr
|
32 |
import logging
|
33 |
logging.getLogger("diffusers").setLevel(logging.ERROR)
|
|
|
38 |
warnings.filterwarnings(action="ignore", category=UserWarning, module="diffusers")
|
39 |
warnings.filterwarnings(action="ignore", category=FutureWarning, module="transformers")
|
40 |
from stablepy import logger
|
41 |
+
logger.setLevel(logging.CRITICAL)
|
42 |
|
43 |
from env import (
|
44 |
+
HF_TOKEN, hf_read_token, # to use only for private repos
|
45 |
CIVITAI_API_KEY, HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2,
|
46 |
HF_LORA_ESSENTIAL_PRIVATE_REPO, HF_VAE_PRIVATE_REPO,
|
47 |
HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO,
|
48 |
+
directory_models, directory_loras, directory_vaes, directory_embeds,
|
49 |
+
directory_embeds_sdxl, directory_embeds_positive_sdxl,
|
50 |
+
load_diffusers_format_model, download_model_list, download_lora_list,
|
51 |
+
download_vae_list, download_embeds)
|
52 |
+
|
53 |
+
PREPROCESSOR_CONTROLNET = {
|
54 |
+
"openpose": [
|
55 |
+
"Openpose",
|
56 |
+
"None",
|
57 |
+
],
|
58 |
+
"scribble": [
|
59 |
+
"HED",
|
60 |
+
"PidiNet",
|
61 |
+
"None",
|
62 |
+
],
|
63 |
+
"softedge": [
|
64 |
+
"PidiNet",
|
65 |
+
"HED",
|
66 |
+
"HED safe",
|
67 |
+
"PidiNet safe",
|
68 |
+
"None",
|
69 |
+
],
|
70 |
+
"segmentation": [
|
71 |
+
"UPerNet",
|
72 |
+
"None",
|
73 |
+
],
|
74 |
+
"depth": [
|
75 |
+
"DPT",
|
76 |
+
"Midas",
|
77 |
+
"None",
|
78 |
+
],
|
79 |
+
"normalbae": [
|
80 |
+
"NormalBae",
|
81 |
+
"None",
|
82 |
+
],
|
83 |
+
"lineart": [
|
84 |
+
"Lineart",
|
85 |
+
"Lineart coarse",
|
86 |
+
"Lineart (anime)",
|
87 |
+
"None",
|
88 |
+
"None (anime)",
|
89 |
+
],
|
90 |
+
"lineart_anime": [
|
91 |
+
"Lineart",
|
92 |
+
"Lineart coarse",
|
93 |
+
"Lineart (anime)",
|
94 |
+
"None",
|
95 |
+
"None (anime)",
|
96 |
+
],
|
97 |
+
"shuffle": [
|
98 |
+
"ContentShuffle",
|
99 |
+
"None",
|
100 |
+
],
|
101 |
+
"canny": [
|
102 |
+
"Canny",
|
103 |
+
"None",
|
104 |
+
],
|
105 |
+
"mlsd": [
|
106 |
+
"MLSD",
|
107 |
+
"None",
|
108 |
+
],
|
109 |
+
"ip2p": [
|
110 |
+
"ip2p"
|
111 |
+
],
|
112 |
+
"recolor": [
|
113 |
+
"Recolor luminance",
|
114 |
+
"Recolor intensity",
|
115 |
+
"None",
|
116 |
+
],
|
117 |
+
"tile": [
|
118 |
+
"Mild Blur",
|
119 |
+
"Moderate Blur",
|
120 |
+
"Heavy Blur",
|
121 |
+
"None",
|
122 |
+
],
|
123 |
+
}
|
124 |
+
|
125 |
+
TASK_STABLEPY = {
|
126 |
+
'txt2img': 'txt2img',
|
127 |
+
'img2img': 'img2img',
|
128 |
+
'inpaint': 'inpaint',
|
129 |
+
# 'canny T2I Adapter': 'sdxl_canny_t2i', # NO HAVE STEP CALLBACK PARAMETERS SO NOT WORKS WITH DIFFUSERS 0.29.0
|
130 |
+
# 'sketch T2I Adapter': 'sdxl_sketch_t2i',
|
131 |
+
# 'lineart T2I Adapter': 'sdxl_lineart_t2i',
|
132 |
+
# 'depth-midas T2I Adapter': 'sdxl_depth-midas_t2i',
|
133 |
+
# 'openpose T2I Adapter': 'sdxl_openpose_t2i',
|
134 |
+
'openpose ControlNet': 'openpose',
|
135 |
+
'canny ControlNet': 'canny',
|
136 |
+
'mlsd ControlNet': 'mlsd',
|
137 |
+
'scribble ControlNet': 'scribble',
|
138 |
+
'softedge ControlNet': 'softedge',
|
139 |
+
'segmentation ControlNet': 'segmentation',
|
140 |
+
'depth ControlNet': 'depth',
|
141 |
+
'normalbae ControlNet': 'normalbae',
|
142 |
+
'lineart ControlNet': 'lineart',
|
143 |
+
'lineart_anime ControlNet': 'lineart_anime',
|
144 |
+
'shuffle ControlNet': 'shuffle',
|
145 |
+
'ip2p ControlNet': 'ip2p',
|
146 |
+
'optical pattern ControlNet': 'pattern',
|
147 |
+
'recolor ControlNet': 'recolor',
|
148 |
+
'tile ControlNet': 'tile',
|
149 |
+
}
|
150 |
+
|
151 |
+
TASK_MODEL_LIST = list(TASK_STABLEPY.keys())
|
152 |
+
|
153 |
+
UPSCALER_DICT_GUI = {
|
154 |
+
None: None,
|
155 |
+
"Lanczos": "Lanczos",
|
156 |
+
"Nearest": "Nearest",
|
157 |
+
'Latent': 'Latent',
|
158 |
+
'Latent (antialiased)': 'Latent (antialiased)',
|
159 |
+
'Latent (bicubic)': 'Latent (bicubic)',
|
160 |
+
'Latent (bicubic antialiased)': 'Latent (bicubic antialiased)',
|
161 |
+
'Latent (nearest)': 'Latent (nearest)',
|
162 |
+
'Latent (nearest-exact)': 'Latent (nearest-exact)',
|
163 |
+
"RealESRGAN_x4plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth",
|
164 |
+
"RealESRNet_x4plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth",
|
165 |
+
"RealESRGAN_x4plus_anime_6B": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth",
|
166 |
+
"RealESRGAN_x2plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
|
167 |
+
"realesr-animevideov3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth",
|
168 |
+
"realesr-general-x4v3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
|
169 |
+
"realesr-general-wdn-x4v3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth",
|
170 |
+
"4x-UltraSharp": "https://huggingface.co/Shandypur/ESRGAN-4x-UltraSharp/resolve/main/4x-UltraSharp.pth",
|
171 |
+
"4x_foolhardy_Remacri": "https://huggingface.co/FacehugmanIII/4x_foolhardy_Remacri/resolve/main/4x_foolhardy_Remacri.pth",
|
172 |
+
"Remacri4xExtraSmoother": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/Remacri%204x%20ExtraSmoother.pth",
|
173 |
+
"AnimeSharp4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/AnimeSharp%204x.pth",
|
174 |
+
"lollypop": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/lollypop.pth",
|
175 |
+
"RealisticRescaler4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/RealisticRescaler%204x.pth",
|
176 |
+
"NickelbackFS4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/NickelbackFS%204x.pth"
|
177 |
+
}
|
178 |
+
|
179 |
+
UPSCALER_KEYS = list(UPSCALER_DICT_GUI.keys())
|
180 |
+
|
181 |
+
|
182 |
+
def get_model_list(directory_path):
|
183 |
+
model_list = []
|
184 |
+
valid_extensions = {'.ckpt', '.pt', '.pth', '.safetensors', '.bin'}
|
185 |
+
|
186 |
+
for filename in os.listdir(directory_path):
|
187 |
+
if os.path.splitext(filename)[1] in valid_extensions:
|
188 |
+
# name_without_extension = os.path.splitext(filename)[0]
|
189 |
+
file_path = os.path.join(directory_path, filename)
|
190 |
+
# model_list.append((name_without_extension, file_path))
|
191 |
+
model_list.append(file_path)
|
192 |
+
print('\033[34mFILE: ' + file_path + '\033[0m')
|
193 |
+
return model_list
|
194 |
|
195 |
+
## BEGIN MOD
|
196 |
from modutils import (to_list, list_uniq, list_sub, get_model_id_list, get_tupled_embed_list,
|
197 |
get_tupled_model_list, get_lora_model_list, download_private_repo, download_things)
|
198 |
|
199 |
# - **Download Models**
|
200 |
+
download_model = ", ".join(download_model_list)
|
201 |
# - **Download VAEs**
|
202 |
+
download_vae = ", ".join(download_vae_list)
|
203 |
# - **Download LoRAs**
|
204 |
+
download_lora = ", ".join(download_lora_list)
|
205 |
|
206 |
+
#download_private_repo(HF_LORA_ESSENTIAL_PRIVATE_REPO, directory_loras, True)
|
207 |
+
download_private_repo(HF_VAE_PRIVATE_REPO, directory_vaes, False)
|
208 |
|
209 |
+
load_diffusers_format_model = list_uniq(load_diffusers_format_model + get_model_id_list())
|
210 |
## END MOD
|
211 |
|
212 |
# Download stuffs
|
213 |
for url in [url.strip() for url in download_model.split(',')]:
|
214 |
if not os.path.exists(f"./models/{url.split('/')[-1]}"):
|
215 |
+
download_things(directory_models, url, HF_TOKEN, CIVITAI_API_KEY)
|
216 |
for url in [url.strip() for url in download_vae.split(',')]:
|
217 |
if not os.path.exists(f"./vaes/{url.split('/')[-1]}"):
|
218 |
+
download_things(directory_vaes, url, HF_TOKEN, CIVITAI_API_KEY)
|
219 |
for url in [url.strip() for url in download_lora.split(',')]:
|
220 |
if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
|
221 |
+
download_things(directory_loras, url, HF_TOKEN, CIVITAI_API_KEY)
|
222 |
|
223 |
# Download Embeddings
|
224 |
+
for url_embed in download_embeds:
|
225 |
if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"):
|
226 |
+
download_things(directory_embeds, url_embed, HF_TOKEN, CIVITAI_API_KEY)
|
227 |
|
228 |
# Build list models
|
229 |
+
embed_list = get_model_list(directory_embeds)
|
230 |
+
model_list = get_model_list(directory_models)
|
231 |
model_list = load_diffusers_format_model + model_list
|
|
|
232 |
## BEGIN MOD
|
233 |
lora_model_list = get_lora_model_list()
|
234 |
+
vae_model_list = get_model_list(directory_vaes)
|
235 |
vae_model_list.insert(0, "None")
|
236 |
|
237 |
+
#download_private_repo(HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, directory_embeds_sdxl, False)
|
238 |
+
#download_private_repo(HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO, directory_embeds_positive_sdxl, False)
|
239 |
+
embed_sdxl_list = get_model_list(directory_embeds_sdxl) + get_model_list(directory_embeds_positive_sdxl)
|
240 |
|
241 |
def get_embed_list(pipeline_name):
|
242 |
return get_tupled_embed_list(embed_sdxl_list if pipeline_name == "StableDiffusionXLPipeline" else embed_list)
|
|
|
244 |
|
245 |
print('\033[33m🏁 Download and listing of valid models completed.\033[0m')
|
246 |
|
247 |
+
msg_inc_vae = (
|
248 |
+
"Use the right VAE for your model to maintain image quality. The wrong"
|
249 |
+
" VAE can lead to poor results, like blurriness in the generated images."
|
250 |
+
)
|
251 |
+
|
252 |
+
SDXL_TASK = [k for k, v in TASK_STABLEPY.items() if v in SDXL_TASKS]
|
253 |
+
SD_TASK = [k for k, v in TASK_STABLEPY.items() if v in SD15_TASKS]
|
254 |
+
FLUX_TASK = list(TASK_STABLEPY.keys())[:3] + [k for k, v in TASK_STABLEPY.items() if v in FLUX_CN_UNION_MODES.keys()]
|
255 |
+
|
256 |
+
MODEL_TYPE_TASK = {
|
257 |
+
"SD 1.5": SD_TASK,
|
258 |
+
"SDXL": SDXL_TASK,
|
259 |
+
"FLUX": FLUX_TASK,
|
260 |
+
}
|
261 |
+
|
262 |
+
MODEL_TYPE_CLASS = {
|
263 |
+
"diffusers:StableDiffusionPipeline": "SD 1.5",
|
264 |
+
"diffusers:StableDiffusionXLPipeline": "SDXL",
|
265 |
+
"diffusers:FluxPipeline": "FLUX",
|
266 |
+
}
|
267 |
+
|
268 |
+
POST_PROCESSING_SAMPLER = ["Use same sampler"] + scheduler_names[:-2]
|
269 |
+
|
270 |
+
def extract_parameters(input_string):
|
271 |
+
parameters = {}
|
272 |
+
input_string = input_string.replace("\n", "")
|
273 |
+
|
274 |
+
if "Negative prompt:" not in input_string:
|
275 |
+
if "Steps:" in input_string:
|
276 |
+
input_string = input_string.replace("Steps:", "Negative prompt: Steps:")
|
277 |
+
else:
|
278 |
+
print("Invalid metadata")
|
279 |
+
parameters["prompt"] = input_string
|
280 |
+
return parameters
|
281 |
+
|
282 |
+
parm = input_string.split("Negative prompt:")
|
283 |
+
parameters["prompt"] = parm[0].strip()
|
284 |
+
if "Steps:" not in parm[1]:
|
285 |
+
print("Steps not detected")
|
286 |
+
parameters["neg_prompt"] = parm[1].strip()
|
287 |
+
return parameters
|
288 |
+
parm = parm[1].split("Steps:")
|
289 |
+
parameters["neg_prompt"] = parm[0].strip()
|
290 |
+
input_string = "Steps:" + parm[1]
|
291 |
+
|
292 |
+
# Extracting Steps
|
293 |
+
steps_match = re.search(r'Steps: (\d+)', input_string)
|
294 |
+
if steps_match:
|
295 |
+
parameters['Steps'] = int(steps_match.group(1))
|
296 |
+
|
297 |
+
# Extracting Size
|
298 |
+
size_match = re.search(r'Size: (\d+x\d+)', input_string)
|
299 |
+
if size_match:
|
300 |
+
parameters['Size'] = size_match.group(1)
|
301 |
+
width, height = map(int, parameters['Size'].split('x'))
|
302 |
+
parameters['width'] = width
|
303 |
+
parameters['height'] = height
|
304 |
+
|
305 |
+
# Extracting other parameters
|
306 |
+
other_parameters = re.findall(r'(\w+): (.*?)(?=, \w+|$)', input_string)
|
307 |
+
for param in other_parameters:
|
308 |
+
parameters[param[0]] = param[1].strip('"')
|
309 |
+
|
310 |
+
return parameters
|
311 |
+
|
312 |
+
def get_model_type(repo_id: str):
|
313 |
+
api = HfApi(token=os.environ.get("HF_TOKEN")) # if use private or gated model
|
314 |
+
default = "SD 1.5"
|
315 |
+
try:
|
316 |
+
model = api.model_info(repo_id=repo_id, timeout=5.0)
|
317 |
+
tags = model.tags
|
318 |
+
for tag in tags:
|
319 |
+
if tag in MODEL_TYPE_CLASS.keys(): return MODEL_TYPE_CLASS.get(tag, default)
|
320 |
+
except Exception:
|
321 |
+
return default
|
322 |
+
return default
|
323 |
+
|
324 |
## BEGIN MOD
|
325 |
class GuiSD:
|
326 |
+
def __init__(self):
|
327 |
self.model = None
|
328 |
+
|
329 |
+
print("Loading model...")
|
330 |
+
self.model = Model_Diffusers(
|
331 |
+
base_model_id="Lykon/dreamshaper-8",
|
332 |
+
task_name="txt2img",
|
333 |
+
vae_model=None,
|
334 |
+
type_model_precision=torch.float16,
|
335 |
+
retain_task_model_in_cache=False,
|
336 |
+
device="cpu",
|
337 |
+
)
|
338 |
+
self.model.load_beta_styles()
|
339 |
+
#self.model.device = torch.device("cpu") #
|
340 |
|
341 |
def infer_short(self, model, pipe_params, progress=gr.Progress(track_tqdm=True)):
|
342 |
#progress(0, desc="Start inference...")
|
|
|
350 |
return img
|
351 |
|
352 |
def load_new_model(self, model_name, vae_model, task, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
|
354 |
#yield f"Loading model: {model_name}"
|
355 |
+
|
356 |
+
vae_model = vae_model if vae_model != "None" else None
|
357 |
+
model_type = get_model_type(model_name)
|
358 |
|
359 |
if vae_model:
|
360 |
vae_type = "SDXL" if "sdxl" in vae_model.lower() else "SD 1.5"
|
361 |
if model_type != vae_type:
|
362 |
+
gr.Warning(msg_inc_vae)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
363 |
|
364 |
+
self.model.device = torch.device("cpu")
|
365 |
+
dtype_model = torch.bfloat16 if model_type == "FLUX" else torch.float16
|
366 |
+
|
367 |
+
self.model.load_pipe(
|
368 |
+
model_name,
|
369 |
+
task_name=TASK_STABLEPY[task],
|
370 |
+
vae_model=vae_model if vae_model != "None" else None,
|
371 |
+
type_model_precision=dtype_model,
|
372 |
+
retain_task_model_in_cache=False,
|
373 |
+
)
|
374 |
#yield f"Model loaded: {model_name}"
|
375 |
|
376 |
#@spaces.GPU
|
377 |
+
@torch.inference_mode()
|
378 |
def generate_pipeline(
|
379 |
self,
|
380 |
prompt,
|
|
|
479 |
mode_ip2,
|
480 |
scale_ip2,
|
481 |
pag_scale,
|
482 |
+
#progress=gr.Progress(track_tqdm=True),
|
483 |
):
|
484 |
+
#progress(0, desc="Preparing inference...")
|
485 |
+
|
|
|
486 |
vae_model = vae_model if vae_model != "None" else None
|
487 |
loras_list = [lora1, lora2, lora3, lora4, lora5]
|
488 |
vae_msg = f"VAE: {vae_model}" if vae_model else ""
|
489 |
msg_lora = ""
|
490 |
|
491 |
+
print("Config model:", model_name, vae_model, loras_list)
|
492 |
+
|
493 |
## BEGIN MOD
|
|
|
494 |
prompt, neg_prompt = insert_model_recom_prompt(prompt, neg_prompt, model_name)
|
495 |
global lora_model_list
|
496 |
lora_model_list = get_lora_model_list()
|
497 |
## END MOD
|
498 |
|
|
|
|
|
499 |
task = TASK_STABLEPY[task]
|
500 |
|
501 |
params_ip_img = []
|
|
|
518 |
params_ip_mode.append(modeip)
|
519 |
params_ip_scale.append(scaleip)
|
520 |
|
|
|
|
|
|
|
521 |
if task != "txt2img" and not image_control:
|
522 |
raise ValueError("No control image found: To use this function, you have to upload an image in 'Image ControlNet/Inpaint/Img2img'")
|
523 |
|
|
|
589 |
"high_threshold": high_threshold,
|
590 |
"value_threshold": value_threshold,
|
591 |
"distance_threshold": distance_threshold,
|
592 |
+
"lora_A": lora1 if lora1 != "None" and lora1 != "" else None,
|
593 |
"lora_scale_A": lora_scale1,
|
594 |
+
"lora_B": lora2 if lora2 != "None" and lora2 != "" else None,
|
595 |
"lora_scale_B": lora_scale2,
|
596 |
+
"lora_C": lora3 if lora3 != "None" and lora3 != "" else None,
|
597 |
"lora_scale_C": lora_scale3,
|
598 |
+
"lora_D": lora4 if lora4 != "None" and lora4 != "" else None,
|
599 |
"lora_scale_D": lora_scale4,
|
600 |
+
"lora_E": lora5 if lora5 != "None" and lora5 != "" else None,
|
601 |
"lora_scale_E": lora_scale5,
|
602 |
## BEGIN MOD
|
603 |
"textual_inversion": get_embed_list(self.model.class_name) if textual_inversion else [],
|
|
|
647 |
}
|
648 |
|
649 |
self.model.device = torch.device("cuda:0")
|
650 |
+
if hasattr(self.model.pipe, "transformer") and loras_list != ["None"] * 5 and loras_list != [""] * 5:
|
651 |
self.model.pipe.transformer.to(self.model.device)
|
652 |
print("transformer to cuda")
|
653 |
|
654 |
+
#progress(1, desc="Inference preparation completed. Starting inference...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
655 |
|
656 |
+
info_state = "" # for yield version
|
657 |
+
return self.infer_short(self.model, pipe_params), info_state
|
658 |
## END MOD
|
659 |
|
|
|
|
|
|
|
|
|
|
|
660 |
def dynamic_gpu_duration(func, duration, *args):
|
661 |
|
|
|
662 |
@spaces.GPU(duration=duration)
|
663 |
def wrapped_func():
|
664 |
return func(*args)
|
|
|
678 |
load_lora_cpu = args[-3]
|
679 |
generation_args = args[:-3]
|
680 |
lora_list = [
|
681 |
+
None if item == "None" or item == "" else item
|
682 |
for item in [args[7], args[9], args[11], args[13], args[15]]
|
683 |
]
|
684 |
lora_status = [None] * 5
|
|
|
688 |
msg_load_lora = "Updating LoRAs in CPU (Slow but saves GPU usage)..."
|
689 |
|
690 |
#if lora_list != sd_gen.model.lora_memory and lora_list != [None] * 5:
|
691 |
+
# yield None, msg_load_lora
|
692 |
|
693 |
# Load lora in CPU
|
694 |
if load_lora_cpu:
|
|
|
714 |
)
|
715 |
gr.Info(f"LoRAs in cache: {lora_cache_msg}")
|
716 |
|
717 |
+
msg_request = f"Requesting {gpu_duration_arg}s. of GPU time"
|
|
|
718 |
gr.Info(msg_request)
|
719 |
print(msg_request)
|
720 |
+
|
721 |
+
# yield from sd_gen.generate_pipeline(*generation_args)
|
722 |
|
723 |
start_time = time.time()
|
724 |
|
|
|
|
|
725 |
return dynamic_gpu_duration(
|
726 |
sd_gen.generate_pipeline,
|
727 |
gpu_duration_arg,
|
|
|
729 |
)
|
730 |
|
731 |
end_time = time.time()
|
|
|
|
|
|
|
|
|
732 |
|
733 |
if verbose_arg:
|
734 |
+
execution_time = end_time - start_time
|
735 |
+
msg_task_complete = (
|
736 |
+
f"GPU task complete in: {round(execution_time, 0) + 1} seconds"
|
737 |
+
)
|
738 |
gr.Info(msg_task_complete)
|
739 |
print(msg_task_complete)
|
740 |
|
741 |
+
def extract_exif_data(image):
|
742 |
+
if image is None: return ""
|
743 |
+
|
744 |
+
try:
|
745 |
+
metadata_keys = ['parameters', 'metadata', 'prompt', 'Comment']
|
746 |
+
|
747 |
+
for key in metadata_keys:
|
748 |
+
if key in image.info:
|
749 |
+
return image.info[key]
|
750 |
|
751 |
+
return str(image.info)
|
752 |
|
753 |
+
except Exception as e:
|
754 |
+
return f"Error extracting metadata: {str(e)}"
|
755 |
+
|
756 |
+
@spaces.GPU(duration=20)
|
757 |
def esrgan_upscale(image, upscaler_name, upscaler_size):
|
758 |
if image is None: return None
|
759 |
|
|
|
775 |
|
776 |
return image_path
|
777 |
|
|
|
778 |
dynamic_gpu_duration.zerogpu = True
|
779 |
sd_gen_generate_pipeline.zerogpu = True
|
|
|
|
|
780 |
|
781 |
from pathlib import Path
|
782 |
from PIL import Image
|
783 |
import random, json
|
784 |
from modutils import (safe_float, escape_lora_basename, to_lora_key, to_lora_path,
|
785 |
get_local_model_list, get_private_lora_model_lists, get_valid_lora_name,
|
786 |
+
get_valid_lora_path, get_valid_lora_wt, get_lora_info, CIVITAI_SORT, CIVITAI_PERIOD,
|
787 |
+
normalize_prompt_list, get_civitai_info, search_lora_on_civitai, translate_to_en)
|
|
|
788 |
|
789 |
+
sd_gen = GuiSD()
|
790 |
#@spaces.GPU
|
791 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
|
792 |
model_name = load_diffusers_format_model[0], lora1 = None, lora1_wt = 1.0, lora2 = None, lora2_wt = 1.0,
|
|
|
801 |
gpu_duration = 59
|
802 |
|
803 |
images: list[tuple[PIL.Image.Image, str | None]] = []
|
804 |
+
info: str = ""
|
805 |
progress(0, desc="Preparing...")
|
806 |
|
807 |
if randomize_seed:
|
|
|
828 |
sd_gen.load_new_model(model_name, vae, TASK_MODEL_LIST[0])
|
829 |
progress(1, desc="Model loaded.")
|
830 |
progress(0, desc="Starting Inference...")
|
831 |
+
images, info = sd_gen_generate_pipeline(prompt, negative_prompt, 1, num_inference_steps,
|
832 |
guidance_scale, True, generator, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt,
|
833 |
lora4, lora4_wt, lora5, lora5_wt, sampler,
|
834 |
height, width, model_name, vae, TASK_MODEL_LIST[0], None, "Canny", 512, 1024,
|
|
|
1008 |
def download_lora(dl_urls: str):
|
1009 |
global loras_url_to_path_dict
|
1010 |
dl_path = ""
|
1011 |
+
before = get_local_model_list(directory_loras)
|
1012 |
urls = []
|
1013 |
for url in [url.strip() for url in dl_urls.split(',')]:
|
1014 |
+
local_path = f"{directory_loras}/{url.split('/')[-1]}"
|
1015 |
if not Path(local_path).exists():
|
1016 |
+
download_things(directory_loras, url, HF_TOKEN, CIVITAI_API_KEY)
|
1017 |
urls.append(url)
|
1018 |
+
after = get_local_model_list(directory_loras)
|
1019 |
new_files = list_sub(after, before)
|
1020 |
i = 0
|
1021 |
for file in new_files:
|