File size: 50,703 Bytes
9ee2570
 
e6e361c
 
 
 
 
10a9d50
e2bdea8
6c79e9c
e6e361c
9f748cc
e2bdea8
9f748cc
 
 
 
 
 
 
 
 
10a9d50
6c79e9c
 
9f748cc
9ee2570
 
 
4b6439a
a43ee0a
9f748cc
 
 
 
 
 
 
b4477ed
 
9f748cc
 
e6e361c
9f748cc
10a9d50
9f748cc
 
 
 
 
 
10a9d50
9f748cc
6c79e9c
 
 
ab41240
a43ee0a
10a9d50
9f748cc
ab41240
 
9f748cc
9ee2570
 
 
 
 
9f748cc
9ee2570
 
9f748cc
27218a1
 
 
9f748cc
 
 
 
9ee2570
27218a1
e0e80e4
9ee2570
 
9f748cc
9ee2570
9f748cc
9ee2570
9f748cc
9ee2570
9f748cc
 
9ee2570
9f748cc
9ee2570
 
e2bdea8
 
 
 
9ee2570
 
 
9f748cc
9ee2570
 
9f748cc
9ee2570
 
9f748cc
9ee2570
 
9f748cc
9ee2570
9f748cc
9ee2570
 
9f748cc
b4477ed
 
9f748cc
9ee2570
 
9f748cc
e6e361c
9ee2570
 
10a9d50
 
9f748cc
9ee2570
 
 
 
 
 
 
10a9d50
 
 
 
 
76d770d
10a9d50
 
6c79e9c
10a9d50
76d770d
10a9d50
9ee2570
 
9f748cc
9ee2570
9f748cc
 
 
b4477ed
 
10a9d50
b4477ed
 
 
 
 
 
 
 
 
 
 
 
9ee2570
10a9d50
9ee2570
10a9d50
e0e80e4
 
 
 
b4477ed
 
 
9ee2570
e0e80e4
9f748cc
 
 
 
 
 
 
 
 
 
b4477ed
 
9f748cc
 
 
 
 
 
 
 
 
 
 
 
 
 
9ee2570
e6e361c
6c79e9c
e6e361c
b7778c4
 
9f748cc
9ee2570
9f748cc
 
 
 
 
 
 
 
 
 
 
 
10a9d50
9f748cc
10a9d50
9f748cc
10a9d50
9f748cc
 
 
 
 
10a9d50
9f748cc
10a9d50
9f748cc
 
 
 
 
 
 
 
10a9d50
9f748cc
 
 
 
 
 
 
 
 
 
 
 
 
 
9ee2570
4b6439a
d34f363
9ee2570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10a9d50
 
 
 
9ee2570
e6e361c
 
9ee2570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10a9d50
 
9ee2570
 
 
 
 
 
 
e2bdea8
 
9ee2570
 
 
 
 
 
 
10a9d50
 
 
9ee2570
 
 
 
 
 
e6e361c
9ee2570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10a9d50
9ee2570
 
 
 
 
 
 
 
 
 
025c21d
e2bdea8
 
 
9ee2570
9f748cc
 
 
9ee2570
10a9d50
9ee2570
4b6439a
9ee2570
 
9f748cc
9ee2570
 
 
 
9f748cc
 
b7778c4
9ee2570
 
 
 
 
 
 
 
 
 
 
 
e6e361c
 
 
 
 
 
 
 
 
9ee2570
9f748cc
 
 
9ee2570
6c79e9c
9ee2570
6c79e9c
 
9ee2570
e2bdea8
9ee2570
 
b7778c4
9ee2570
e2bdea8
 
9ee2570
e2bdea8
9ee2570
 
 
 
b7778c4
 
 
9ee2570
b7778c4
 
9ee2570
b7778c4
 
 
 
 
9ee2570
 
 
b7778c4
 
 
9ee2570
b7778c4
 
9ee2570
b7778c4
 
 
9ee2570
 
 
 
 
 
 
 
 
 
025c21d
9ee2570
 
 
 
 
 
 
 
 
 
 
 
 
10a9d50
 
9f748cc
9ee2570
9f748cc
9ee2570
9f748cc
9ee2570
9f748cc
9ee2570
9f748cc
9ee2570
10a9d50
 
 
 
9ee2570
 
 
 
 
e6e361c
 
9ee2570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6e361c
9ee2570
 
 
 
 
 
 
 
 
e2bdea8
 
9ee2570
 
 
 
 
 
 
10a9d50
 
9ee2570
 
 
 
 
e2bdea8
 
 
9ee2570
 
10a9d50
 
 
 
d34f363
10a9d50
d34f363
 
9ee2570
9f748cc
 
e6e361c
9f748cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10a9d50
9f748cc
 
 
 
 
 
 
 
 
 
 
 
 
9ee2570
9f748cc
 
 
 
9ee2570
4b6439a
 
 
 
9f748cc
4b6439a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f748cc
10a9d50
4b6439a
10a9d50
4b6439a
 
 
10a9d50
4b6439a
10a9d50
9f748cc
4b6439a
 
 
10a9d50
4b6439a
 
 
 
 
10a9d50
 
4b6439a
 
 
10a9d50
 
e6e361c
 
 
 
 
 
4b6439a
 
 
 
 
 
 
10a9d50
4b6439a
 
 
 
b7778c4
9f748cc
 
4b6439a
 
9f748cc
b7778c4
4b6439a
b7778c4
9f748cc
 
4b6439a
 
 
 
 
 
9f748cc
 
 
 
b7778c4
4b6439a
 
 
b7778c4
9f748cc
a43ee0a
 
9f748cc
e2bdea8
a43ee0a
 
 
e2bdea8
a43ee0a
e2bdea8
a43ee0a
 
e2bdea8
 
 
 
 
 
 
 
a43ee0a
e2bdea8
 
a43ee0a
 
 
 
4b6439a
9f748cc
10a9d50
4b6439a
 
9f748cc
 
9ee2570
 
4b6439a
e6e361c
 
 
 
 
86a1d1a
10a9d50
 
 
9f748cc
10a9d50
 
 
9f748cc
 
1f682f8
9ee2570
3763349
10a9d50
 
 
 
 
 
 
 
e2bdea8
10a9d50
 
 
 
 
e2bdea8
 
9ee2570
 
10a9d50
 
 
 
 
 
 
 
 
 
 
 
 
9f748cc
10a9d50
 
 
 
 
 
 
 
 
 
 
 
582ad1d
9f748cc
 
 
 
 
 
3763349
9f748cc
 
 
 
 
 
23aa4a5
9f748cc
10a9d50
 
9f748cc
 
 
 
 
10a9d50
 
9f748cc
 
 
10a9d50
9f748cc
 
 
 
3763349
10a9d50
 
 
 
e2bdea8
10a9d50
 
 
 
 
 
 
 
e2bdea8
 
9f748cc
 
 
 
 
86a1d1a
 
9f748cc
 
9ee2570
1f682f8
9ee2570
3763349
10a9d50
 
 
 
 
 
 
 
e2bdea8
10a9d50
 
 
 
 
e2bdea8
 
23aa4a5
9ee2570
 
40ea453
 
 
 
9ee2570
 
 
 
 
 
 
 
 
 
 
 
10a9d50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ee2570
23aa4a5
 
9ee2570
 
 
 
 
 
23aa4a5
9ee2570
 
 
 
 
 
 
 
 
23aa4a5
 
9ee2570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9329194
 
 
 
 
 
6fd8887
9329194
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
import spaces
import os
from stablepy import (
    Model_Diffusers,
    SCHEDULE_TYPE_OPTIONS,
    SCHEDULE_PREDICTION_TYPE_OPTIONS,
    check_scheduler_compatibility,
    TASK_AND_PREPROCESSORS,
    FACE_RESTORATION_MODELS,
    scheduler_names,
)
from constants import (
    DIRECTORY_UPSCALERS,
    TASK_STABLEPY,
    TASK_MODEL_LIST,
    UPSCALER_DICT_GUI,
    UPSCALER_KEYS,
    PROMPT_W_OPTIONS,
    WARNING_MSG_VAE,
    SDXL_TASK,
    MODEL_TYPE_TASK,
    POST_PROCESSING_SAMPLER,
    DIFFUSERS_CONTROLNET_MODEL,
    IP_MODELS,
    MODE_IP_OPTIONS,
)
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
import torch
import re
import time
from PIL import ImageFile
from utils import (
    get_model_list,
    extract_parameters,
    get_model_type,
    extract_exif_data,
    create_mask_now,
    download_diffuser_repo,
    get_used_storage_gb,
    delete_model,
    progress_step_bar,
    html_template_message,
    escape_html,
)
from image_processor import preprocessor_tab
from datetime import datetime
import gradio as gr
import logging
import diffusers
import warnings
from stablepy import logger
from diffusers import FluxPipeline
# import urllib.parse
import subprocess

subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)

ImageFile.LOAD_TRUNCATED_IMAGES = True
torch.backends.cuda.matmul.allow_tf32 = True
# os.environ["PYTORCH_NO_CUDA_MEMORY_CACHING"] = "1"
print(os.getenv("SPACES_ZERO_GPU"))

## BEGIN MOD
logging.getLogger("diffusers").setLevel(logging.ERROR)
diffusers.utils.logging.set_verbosity(40)
warnings.filterwarnings(action="ignore", category=FutureWarning, module="diffusers")
warnings.filterwarnings(action="ignore", category=UserWarning, module="diffusers")
warnings.filterwarnings(action="ignore", category=FutureWarning, module="transformers")
logger.setLevel(logging.DEBUG)

from env import (
    HF_TOKEN, HF_READ_TOKEN, # to use only for private repos
    CIVITAI_API_KEY, HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2,
    HF_LORA_ESSENTIAL_PRIVATE_REPO, HF_VAE_PRIVATE_REPO,
    HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO,
    DIRECTORY_MODELS, DIRECTORY_LORAS, DIRECTORY_VAES, DIRECTORY_EMBEDS,
    DIRECTORY_EMBEDS_SDXL, DIRECTORY_EMBEDS_POSITIVE_SDXL,
    LOAD_DIFFUSERS_FORMAT_MODEL, DOWNLOAD_MODEL_LIST, DOWNLOAD_LORA_LIST,
    DOWNLOAD_VAE_LIST, DOWNLOAD_EMBEDS)

from modutils import (to_list, list_uniq, list_sub, get_model_id_list, get_tupled_embed_list,
                      get_tupled_model_list, get_lora_model_list, download_private_repo, download_things, download_link_model)

# - **Download Models**
download_model = ", ".join(DOWNLOAD_MODEL_LIST)
# - **Download VAEs**
download_vae = ", ".join(DOWNLOAD_VAE_LIST)
# - **Download LoRAs**
download_lora = ", ".join(DOWNLOAD_LORA_LIST)

#download_private_repo(HF_LORA_ESSENTIAL_PRIVATE_REPO, DIRECTORY_LORAS, True)
download_private_repo(HF_VAE_PRIVATE_REPO, DIRECTORY_VAES, False)

load_diffusers_format_model = list_uniq(LOAD_DIFFUSERS_FORMAT_MODEL + get_model_id_list())
## END MOD

directories = [DIRECTORY_MODELS, DIRECTORY_LORAS, DIRECTORY_VAES, DIRECTORY_EMBEDS, DIRECTORY_UPSCALERS]
for directory in directories:
    os.makedirs(directory, exist_ok=True)

# Download stuffs
for url in [url.strip() for url in download_model.split(',')]:
    if not os.path.exists(f"./models/{url.split('/')[-1]}"):
        download_things(DIRECTORY_MODELS, url, HF_TOKEN, CIVITAI_API_KEY)
for url in [url.strip() for url in download_vae.split(',')]:
    if not os.path.exists(f"./vaes/{url.split('/')[-1]}"):
        download_things(DIRECTORY_VAES, url, HF_TOKEN, CIVITAI_API_KEY)
for url in [url.strip() for url in download_lora.split(',')]:
    if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
        download_things(DIRECTORY_LORAS, url, HF_TOKEN, CIVITAI_API_KEY)

# Download Embeddings
for url_embed in DOWNLOAD_EMBEDS:
    if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"):
        download_things(DIRECTORY_EMBEDS, url_embed, HF_TOKEN, CIVITAI_API_KEY)

# Build list models
embed_list = get_model_list(DIRECTORY_EMBEDS)
single_file_model_list = get_model_list(DIRECTORY_MODELS)
model_list = list_uniq(get_model_id_list() + LOAD_DIFFUSERS_FORMAT_MODEL + single_file_model_list)

## BEGIN MOD
lora_model_list = get_lora_model_list()
vae_model_list = get_model_list(DIRECTORY_VAES)
vae_model_list.insert(0, "BakedVAE")
vae_model_list.insert(0, "None")

download_private_repo(HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, DIRECTORY_EMBEDS_SDXL, False)
download_private_repo(HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO, DIRECTORY_EMBEDS_POSITIVE_SDXL, False)
embed_sdxl_list = get_model_list(DIRECTORY_EMBEDS_SDXL) + get_model_list(DIRECTORY_EMBEDS_POSITIVE_SDXL)

def get_embed_list(pipeline_name):
    return get_tupled_embed_list(embed_sdxl_list if pipeline_name == "StableDiffusionXLPipeline" else embed_list)
## END MOD

print('\033[33m🏁 Download and listing of valid models completed.\033[0m')

flux_repo = "camenduru/FLUX.1-dev-diffusers"
flux_pipe = FluxPipeline.from_pretrained(
    flux_repo,
    transformer=None,
    torch_dtype=torch.bfloat16,
)#.to("cuda")
components = flux_pipe.components
components.pop("transformer", None)
components.pop("scheduler", None)
delete_model(flux_repo)
#components = None

## BEGIN MOD
class GuiSD:
    def __init__(self, stream=True):
        self.model = None
        self.status_loading = False
        self.sleep_loading = 4
        self.last_load = datetime.now()
        self.inventory = []

    def update_storage_models(self, storage_floor_gb=24, required_inventory_for_purge=3):
        while get_used_storage_gb() > storage_floor_gb:
            if len(self.inventory) < required_inventory_for_purge:
                break
            removal_candidate = self.inventory.pop(0)
            delete_model(removal_candidate)

    def update_inventory(self, model_name):
        if model_name not in single_file_model_list:
            self.inventory = [
                m for m in self.inventory if m != model_name
            ] + [model_name]
        print(self.inventory)

    def load_new_model(self, model_name, vae_model, task, controlnet_model, progress=gr.Progress(track_tqdm=True)):

        # download link model > model_name
        if "http" in model_name: #
            model_name, model_type = download_link_model(model_name, DIRECTORY_MODELS) #
            is_link_model = True #
        else: is_link_model = False #

        self.update_storage_models()

        vae_model = vae_model if vae_model != "None" else None
        model_type = get_model_type(model_name) if not is_link_model else model_type #
        dtype_model = torch.bfloat16 if model_type == "FLUX" else torch.float16

        if not os.path.exists(model_name):
            _ = download_diffuser_repo(
                repo_name=model_name,
                model_type=model_type,
                revision="main",
                token=True,
            )

        self.update_inventory(model_name)

        for i in range(68):
            if not self.status_loading:
                self.status_loading = True
                if i > 0:
                    time.sleep(self.sleep_loading)
                    print("Previous model ops...")
                break
            time.sleep(0.5)
            print(f"Waiting queue {i}")
            yield "Waiting queue"

        self.status_loading = True

        yield f"Loading model: {model_name}"

        if vae_model == "BakedVAE":
            vae_model = model_name
        elif vae_model:
            vae_type = "SDXL" if "sdxl" in vae_model.lower() else "SD 1.5"
            if model_type != vae_type:
                gr.Warning(WARNING_MSG_VAE)

        print("Loading model...")

        try:
            start_time = time.time()

            if self.model is None:
                self.model = Model_Diffusers(
                    base_model_id=model_name,
                    task_name=TASK_STABLEPY[task],
                    vae_model=vae_model,
                    type_model_precision=dtype_model,
                    retain_task_model_in_cache=False,
                    controlnet_model=controlnet_model,
                    device="cpu",
                    env_components=components,
                )
                self.model.advanced_params(image_preprocessor_cuda_active=True)
            else:
                if self.model.base_model_id != model_name:
                    load_now_time = datetime.now()
                    elapsed_time = max((load_now_time - self.last_load).total_seconds(), 0)

                    if elapsed_time <= 9:
                        print("Waiting for the previous model's time ops...")
                        time.sleep(9 - elapsed_time)

                self.model.device = torch.device("cpu")
                self.model.load_pipe(
                    model_name,
                    task_name=TASK_STABLEPY[task],
                    vae_model=vae_model,
                    type_model_precision=dtype_model,
                    retain_task_model_in_cache=False,
                    controlnet_model=controlnet_model,
                )

            end_time = time.time()
            self.sleep_loading = max(min(int(end_time - start_time), 10), 4)
        except Exception as e:
            self.last_load = datetime.now()
            self.status_loading = False
            self.sleep_loading = 4
            raise e

        self.last_load = datetime.now()
        self.status_loading = False

        yield f"Model loaded: {model_name}"

    #@spaces.GPU
    @torch.inference_mode()
    def generate_pipeline(

        self,

        prompt,

        neg_prompt,

        num_images,

        steps,

        cfg,

        clip_skip,

        seed,

        lora1,

        lora_scale1,

        lora2,

        lora_scale2,

        lora3,

        lora_scale3,

        lora4,

        lora_scale4,

        lora5,

        lora_scale5,

        lora6,

        lora_scale6,

        lora7,

        lora_scale7,

        sampler,

        schedule_type,

        schedule_prediction_type,

        img_height,

        img_width,

        model_name,

        vae_model,

        task,

        image_control,

        preprocessor_name,

        preprocess_resolution,

        image_resolution,

        style_prompt,  # list []

        style_json_file,

        image_mask,

        strength,

        low_threshold,

        high_threshold,

        value_threshold,

        distance_threshold,

        recolor_gamma_correction,

        tile_blur_sigma,

        controlnet_output_scaling_in_unet,

        controlnet_start_threshold,

        controlnet_stop_threshold,

        textual_inversion,

        syntax_weights,

        upscaler_model_path,

        upscaler_increases_size,

        upscaler_tile_size,

        upscaler_tile_overlap,

        hires_steps,

        hires_denoising_strength,

        hires_sampler,

        hires_prompt,

        hires_negative_prompt,

        hires_before_adetailer,

        hires_after_adetailer,

        hires_schedule_type,

        hires_guidance_scale,

        controlnet_model,

        loop_generation,

        leave_progress_bar,

        disable_progress_bar,

        image_previews,

        display_images,

        save_generated_images,

        filename_pattern,

        image_storage_location,

        retain_compel_previous_load,

        retain_detailfix_model_previous_load,

        retain_hires_model_previous_load,

        t2i_adapter_preprocessor,

        t2i_adapter_conditioning_scale,

        t2i_adapter_conditioning_factor,

        xformers_memory_efficient_attention,

        freeu,

        generator_in_cpu,

        adetailer_inpaint_only,

        adetailer_verbose,

        adetailer_sampler,

        adetailer_active_a,

        prompt_ad_a,

        negative_prompt_ad_a,

        strength_ad_a,

        face_detector_ad_a,

        person_detector_ad_a,

        hand_detector_ad_a,

        mask_dilation_a,

        mask_blur_a,

        mask_padding_a,

        adetailer_active_b,

        prompt_ad_b,

        negative_prompt_ad_b,

        strength_ad_b,

        face_detector_ad_b,

        person_detector_ad_b,

        hand_detector_ad_b,

        mask_dilation_b,

        mask_blur_b,

        mask_padding_b,

        retain_task_cache_gui,

        guidance_rescale,

        image_ip1,

        mask_ip1,

        model_ip1,

        mode_ip1,

        scale_ip1,

        image_ip2,

        mask_ip2,

        model_ip2,

        mode_ip2,

        scale_ip2,

        pag_scale,

        face_restoration_model,

        face_restoration_visibility,

        face_restoration_weight,

    ):
        info_state = html_template_message("Navigating latent space...")
        yield info_state, gr.update(), gr.update()

        vae_model = vae_model if vae_model != "None" else None
        loras_list = [lora1, lora2, lora3, lora4, lora5, lora6, lora7]
        vae_msg = f"VAE: {vae_model}" if vae_model else ""
        msg_lora = ""

## BEGIN MOD
        loras_list = [s if s else "None" for s in loras_list]
        global lora_model_list
        lora_model_list = get_lora_model_list()
## END MOD
        
        print("Config model:", model_name, vae_model, loras_list)

        task = TASK_STABLEPY[task]

        params_ip_img = []
        params_ip_msk = []
        params_ip_model = []
        params_ip_mode = []
        params_ip_scale = []

        all_adapters = [
            (image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1),
            (image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2),
        ]

        if not hasattr(self.model.pipe, "transformer"):
            for imgip, mskip, modelip, modeip, scaleip in all_adapters:
                if imgip:
                    params_ip_img.append(imgip)
                    if mskip:
                        params_ip_msk.append(mskip)
                    params_ip_model.append(modelip)
                    params_ip_mode.append(modeip)
                    params_ip_scale.append(scaleip)

        concurrency = 5
        self.model.stream_config(concurrency=concurrency, latent_resize_by=1, vae_decoding=False)

        if task != "txt2img" and not image_control:
            raise ValueError("Reference image is required. Please upload one in 'Image ControlNet/Inpaint/Img2img'.")

        if task in ["inpaint", "repaint"] and not image_mask:
            raise ValueError("Mask image not found. Upload one in 'Image Mask' to proceed.")

        if "https://" not in str(UPSCALER_DICT_GUI[upscaler_model_path]):
            upscaler_model = upscaler_model_path
        else:
            url_upscaler = UPSCALER_DICT_GUI[upscaler_model_path]

            if not os.path.exists(f"./{DIRECTORY_UPSCALERS}/{url_upscaler.split('/')[-1]}"):
                download_things(DIRECTORY_UPSCALERS, url_upscaler, HF_TOKEN)

            upscaler_model = f"./{DIRECTORY_UPSCALERS}/{url_upscaler.split('/')[-1]}"

        logging.getLogger("ultralytics").setLevel(logging.INFO if adetailer_verbose else logging.ERROR)

        adetailer_params_A = {
            "face_detector_ad": face_detector_ad_a,
            "person_detector_ad": person_detector_ad_a,
            "hand_detector_ad": hand_detector_ad_a,
            "prompt": prompt_ad_a,
            "negative_prompt": negative_prompt_ad_a,
            "strength": strength_ad_a,
            # "image_list_task" : None,
            "mask_dilation": mask_dilation_a,
            "mask_blur": mask_blur_a,
            "mask_padding": mask_padding_a,
            "inpaint_only": adetailer_inpaint_only,
            "sampler": adetailer_sampler,
        }

        adetailer_params_B = {
            "face_detector_ad": face_detector_ad_b,
            "person_detector_ad": person_detector_ad_b,
            "hand_detector_ad": hand_detector_ad_b,
            "prompt": prompt_ad_b,
            "negative_prompt": negative_prompt_ad_b,
            "strength": strength_ad_b,
            # "image_list_task" : None,
            "mask_dilation": mask_dilation_b,
            "mask_blur": mask_blur_b,
            "mask_padding": mask_padding_b,
        }
        pipe_params = {
            "prompt": prompt,
            "negative_prompt": neg_prompt,
            "img_height": img_height,
            "img_width": img_width,
            "num_images": num_images,
            "num_steps": steps,
            "guidance_scale": cfg,
            "clip_skip": clip_skip,
            "pag_scale": float(pag_scale),
            "seed": seed,
            "image": image_control,
            "preprocessor_name": preprocessor_name,
            "preprocess_resolution": preprocess_resolution,
            "image_resolution": image_resolution,
            "style_prompt": style_prompt if style_prompt else "",
            "style_json_file": "",
            "image_mask": image_mask,  # only for Inpaint
            "strength": strength,  # only for Inpaint or ...
            "low_threshold": low_threshold,
            "high_threshold": high_threshold,
            "value_threshold": value_threshold,
            "distance_threshold": distance_threshold,
            "recolor_gamma_correction": float(recolor_gamma_correction),
            "tile_blur_sigma": int(tile_blur_sigma),
            "lora_A": lora1 if lora1 != "None" else None,
            "lora_scale_A": lora_scale1,
            "lora_B": lora2 if lora2 != "None" else None,
            "lora_scale_B": lora_scale2,
            "lora_C": lora3 if lora3 != "None" else None,
            "lora_scale_C": lora_scale3,
            "lora_D": lora4 if lora4 != "None" else None,
            "lora_scale_D": lora_scale4,
            "lora_E": lora5 if lora5 != "None" else None,
            "lora_scale_E": lora_scale5,
            "lora_F": lora6 if lora6 != "None" else None,
            "lora_scale_F": lora_scale6,
            "lora_G": lora7 if lora7 != "None" else None,
            "lora_scale_G": lora_scale7,
## BEGIN MOD
            "textual_inversion": get_embed_list(self.model.class_name) if textual_inversion else [],
## END MOD
            "syntax_weights": syntax_weights,  # "Classic"
            "sampler": sampler,
            "schedule_type": schedule_type,
            "schedule_prediction_type": schedule_prediction_type,
            "xformers_memory_efficient_attention": xformers_memory_efficient_attention,
            "gui_active": True,
            "loop_generation": loop_generation,
            "controlnet_conditioning_scale": float(controlnet_output_scaling_in_unet),
            "control_guidance_start": float(controlnet_start_threshold),
            "control_guidance_end": float(controlnet_stop_threshold),
            "generator_in_cpu": generator_in_cpu,
            "FreeU": freeu,
            "adetailer_A": adetailer_active_a,
            "adetailer_A_params": adetailer_params_A,
            "adetailer_B": adetailer_active_b,
            "adetailer_B_params": adetailer_params_B,
            "leave_progress_bar": leave_progress_bar,
            "disable_progress_bar": disable_progress_bar,
            "image_previews": image_previews,
            "display_images": display_images,
            "save_generated_images": save_generated_images,
            "filename_pattern": filename_pattern,
            "image_storage_location": image_storage_location,
            "retain_compel_previous_load": retain_compel_previous_load,
            "retain_detailfix_model_previous_load": retain_detailfix_model_previous_load,
            "retain_hires_model_previous_load": retain_hires_model_previous_load,
            "t2i_adapter_preprocessor": t2i_adapter_preprocessor,
            "t2i_adapter_conditioning_scale": float(t2i_adapter_conditioning_scale),
            "t2i_adapter_conditioning_factor": float(t2i_adapter_conditioning_factor),
            "upscaler_model_path": upscaler_model,
            "upscaler_increases_size": upscaler_increases_size,
            "upscaler_tile_size": upscaler_tile_size,
            "upscaler_tile_overlap": upscaler_tile_overlap,
            "hires_steps": hires_steps,
            "hires_denoising_strength": hires_denoising_strength,
            "hires_prompt": hires_prompt,
            "hires_negative_prompt": hires_negative_prompt,
            "hires_sampler": hires_sampler,
            "hires_before_adetailer": hires_before_adetailer,
            "hires_after_adetailer": hires_after_adetailer,
            "hires_schedule_type": hires_schedule_type,
            "hires_guidance_scale": hires_guidance_scale,
            "ip_adapter_image": params_ip_img,
            "ip_adapter_mask": params_ip_msk,
            "ip_adapter_model": params_ip_model,
            "ip_adapter_mode": params_ip_mode,
            "ip_adapter_scale": params_ip_scale,
            "face_restoration_model": face_restoration_model,
            "face_restoration_visibility": face_restoration_visibility,
            "face_restoration_weight": face_restoration_weight,
        }

        # kwargs for diffusers pipeline
        if guidance_rescale:
            pipe_params["guidance_rescale"] = guidance_rescale

        self.model.device = torch.device("cuda:0")
        if hasattr(self.model.pipe, "transformer") and loras_list != ["None"] * self.model.num_loras:
            self.model.pipe.transformer.to(self.model.device)
            print("transformer to cuda")

        actual_progress = 0
        info_images = gr.update()
        for img, [seed, image_path, metadata] in self.model(**pipe_params):
            info_state = progress_step_bar(actual_progress, steps)
            actual_progress += concurrency
            if image_path:
                info_images = f"Seeds: {str(seed)}"
                if vae_msg:
                    info_images = info_images + "<br>" + vae_msg

                if "Cannot copy out of meta tensor; no data!" in self.model.last_lora_error:
                    msg_ram = "Unable to process the LoRAs due to high RAM usage; please try again later."
                    print(msg_ram)
                    msg_lora += f"<br>{msg_ram}"

                for status, lora in zip(self.model.lora_status, self.model.lora_memory):
                    if status:
                        msg_lora += f"<br>Loaded: {lora}"
                    elif status is not None:
                        msg_lora += f"<br>Error with: {lora}"

                if msg_lora:
                    info_images += msg_lora

                info_images = info_images + "<br>" + "GENERATION DATA:<br>" + escape_html(metadata[-1]) + "<br>-------<br>"

                download_links = "<br>".join(
                    [
                        f'<a href="{path.replace("/images/", "/file=/home/user/app/images/")}" download="{os.path.basename(path)}">Download Image {i + 1}</a>'
                        for i, path in enumerate(image_path)
                    ]
                )
                if save_generated_images:
                    info_images += f"<br>{download_links}"
## BEGIN MOD
                if not isinstance(img, list): img = [img]
                img = save_images(img, metadata)
                img = [(i, None) for i in img]
## END MOD
                info_state = "COMPLETE"

            yield info_state, img, info_images
            #return info_state, img, info_images

def dynamic_gpu_duration(func, duration, *args):

    @spaces.GPU(duration=duration)
    def wrapped_func():
        yield from func(*args)

    return wrapped_func()


@spaces.GPU
def dummy_gpu():
    return None


def sd_gen_generate_pipeline(*args):
    gpu_duration_arg = int(args[-1]) if args[-1] else 59
    verbose_arg = int(args[-2])
    load_lora_cpu = args[-3]
    generation_args = args[:-3]
    lora_list = [
        None if item == "None" or item == "" else item # MOD
        for item in [args[7], args[9], args[11], args[13], args[15], args[17], args[19]]
    ]
    lora_status = [None] * sd_gen.model.num_loras

    msg_load_lora = "Updating LoRAs in GPU..."
    if load_lora_cpu:
        msg_load_lora = "Updating LoRAs in CPU..."

    if lora_list != sd_gen.model.lora_memory and lora_list != [None] * sd_gen.model.num_loras:
        yield msg_load_lora, gr.update(), gr.update()

    # Load lora in CPU
    if load_lora_cpu:
        lora_status = sd_gen.model.load_lora_on_the_fly(
            lora_A=lora_list[0], lora_scale_A=args[8],
            lora_B=lora_list[1], lora_scale_B=args[10],
            lora_C=lora_list[2], lora_scale_C=args[12],
            lora_D=lora_list[3], lora_scale_D=args[14],
            lora_E=lora_list[4], lora_scale_E=args[16],
            lora_F=lora_list[5], lora_scale_F=args[18],
            lora_G=lora_list[6], lora_scale_G=args[20],
        )
        print(lora_status)

    sampler_name = args[21]
    schedule_type_name = args[22]
    _, _, msg_sampler = check_scheduler_compatibility(
        sd_gen.model.class_name, sampler_name, schedule_type_name
    )
    if msg_sampler:
        gr.Warning(msg_sampler)

    if verbose_arg:
        for status, lora in zip(lora_status, lora_list):
            if status:
                gr.Info(f"LoRA loaded in CPU: {lora}")
            elif status is not None:
                gr.Warning(f"Failed to load LoRA: {lora}")

        if lora_status == [None] * sd_gen.model.num_loras and sd_gen.model.lora_memory != [None] * sd_gen.model.num_loras and load_lora_cpu:
            lora_cache_msg = ", ".join(
                str(x) for x in sd_gen.model.lora_memory if x is not None
            )
            gr.Info(f"LoRAs in cache: {lora_cache_msg}")

    msg_request = f"Requesting {gpu_duration_arg}s. of GPU time.\nModel: {sd_gen.model.base_model_id}"
    if verbose_arg:
        gr.Info(msg_request)
        print(msg_request)
    yield msg_request.replace("\n", "<br>"), gr.update(), gr.update()

    start_time = time.time()

    # yield from sd_gen.generate_pipeline(*generation_args)
    yield from dynamic_gpu_duration(
        sd_gen.generate_pipeline,
        gpu_duration_arg,
        *generation_args,
    )

    end_time = time.time()
    execution_time = end_time - start_time
    msg_task_complete = (
        f"GPU task complete in: {int(round(execution_time, 0) + 1)} seconds"
    )

    if verbose_arg:
        gr.Info(msg_task_complete)
        print(msg_task_complete)

    yield msg_task_complete, gr.update(), gr.update()


@spaces.GPU(duration=15)
def process_upscale(image, upscaler_name, upscaler_size):
    if image is None: return None

    from stablepy.diffusers_vanilla.utils import save_pil_image_with_metadata
    from stablepy import load_upscaler_model

    image = image.convert("RGB")
    exif_image = extract_exif_data(image)

    name_upscaler = UPSCALER_DICT_GUI[upscaler_name]

    if "https://" in str(name_upscaler):

        if not os.path.exists(f"./{DIRECTORY_UPSCALERS}/{name_upscaler.split('/')[-1]}"):
            download_things(DIRECTORY_UPSCALERS, name_upscaler, HF_TOKEN)

        name_upscaler = f"./{DIRECTORY_UPSCALERS}/{name_upscaler.split('/')[-1]}"

    scaler_beta = load_upscaler_model(model=name_upscaler, tile=0, tile_overlap=8, device="cuda", half=True)
    image_up = scaler_beta.upscale(image, upscaler_size, True)

    image_path = save_pil_image_with_metadata(image_up, f'{os.getcwd()}/up_images', exif_image)

    return image_path


# https://huggingface.co/spaces/BestWishYsh/ConsisID-preview-Space/discussions/1#674969a022b99c122af5d407
dynamic_gpu_duration.zerogpu = True
sd_gen_generate_pipeline.zerogpu = True
sd_gen = GuiSD()


from pathlib import Path
from PIL import Image
import PIL
import numpy as np
import random
import json
import shutil
import gc
from tagger.tagger import insert_model_recom_prompt
from modutils import (safe_float, escape_lora_basename, to_lora_key, to_lora_path, valid_model_name, set_textual_inversion_prompt,
    get_local_model_list, get_model_pipeline, get_private_lora_model_lists, get_valid_lora_name, get_state, set_state,
    get_valid_lora_path, get_valid_lora_wt, get_lora_info, CIVITAI_SORT, CIVITAI_PERIOD, CIVITAI_BASEMODEL,
    normalize_prompt_list, get_civitai_info, search_lora_on_civitai, translate_to_en, get_t2i_model_info, get_civitai_tag, save_image_history,
    get_all_lora_list, get_all_lora_tupled_list, update_lora_dict, download_lora, copy_lora, download_my_lora, set_prompt_loras,
    apply_lora_prompt, update_loras, search_civitai_lora, search_civitai_lora_json, update_civitai_selection, select_civitai_lora)


#@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,

          model_name=load_diffusers_format_model[0], lora1=None, lora1_wt=1.0, lora2=None, lora2_wt=1.0,

          lora3=None, lora3_wt=1.0, lora4=None, lora4_wt=1.0, lora5=None, lora5_wt=1.0, lora6=None, lora6_wt=1.0, lora7=None, lora7_wt=1.0,

          task=TASK_MODEL_LIST[0], prompt_syntax="Classic", sampler="Euler", vae=None, schedule_type=SCHEDULE_TYPE_OPTIONS[0], schedule_prediction_type=SCHEDULE_PREDICTION_TYPE_OPTIONS[0],

          clip_skip=True, pag_scale=0.0, free_u=False, guidance_rescale=0., image_control_dict=None, image_mask=None, strength=0.35, image_resolution=1024,

          controlnet_model=DIFFUSERS_CONTROLNET_MODEL[0], control_net_output_scaling=1.0, control_net_start_threshold=0., control_net_stop_threshold=1.,

          preprocessor_name="Canny", preprocess_resolution=512, low_threshold=100, high_threshold=200,

          value_threshold=0.1, distance_threshold=0.1, recolor_gamma_correction=1., tile_blur_sigma=9,

          image_ip1_dict=None, mask_ip1=None, model_ip1="plus_face", mode_ip1="original", scale_ip1=0.7,

          image_ip2_dict=None, mask_ip2=None, model_ip2="base", mode_ip2="style", scale_ip2=0.7,

          upscaler_model_path=None, upscaler_increases_size=1.0, upscaler_tile_size=0, upscaler_tile_overlap=8, hires_steps=30, hires_denoising_strength=0.55,

          hires_sampler="Use same sampler", hires_schedule_type="Use same schedule type", hires_guidance_scale=-1, hires_prompt="", hires_negative_prompt="",

          adetailer_inpaint_only=True, adetailer_verbose=False, adetailer_sampler="Use same sampler", adetailer_active_a=False,

          prompt_ad_a="", negative_prompt_ad_a="", strength_ad_a=0.35, face_detector_ad_a=True, person_detector_ad_a=True, hand_detector_ad_a=False,

          mask_dilation_a=4, mask_blur_a=4, mask_padding_a=32, adetailer_active_b=False, prompt_ad_b="", negative_prompt_ad_b="", strength_ad_b=0.35,

          face_detector_ad_b=True, person_detector_ad_b=True, hand_detector_ad_b=False, mask_dilation_b=4, mask_blur_b=4, mask_padding_b=32,

          active_textual_inversion=False, face_restoration_model=None, face_restoration_visibility=1., face_restoration_weight=.5,

          gpu_duration=59, translate=False, recom_prompt=True, progress=gr.Progress(track_tqdm=True)):
    MAX_SEED = np.iinfo(np.int32).max

    image_mask = image_control_dict['layers'][0] if isinstance(image_control_dict, dict) and not image_mask else image_mask
    image_control = image_control_dict['background'] if isinstance(image_control_dict, dict) else None
    mask_ip1 = image_ip1_dict['layers'][0] if isinstance(image_ip1_dict, dict) and not mask_ip1 else mask_ip1
    image_ip1 = image_ip1_dict['background'] if isinstance(image_ip1_dict, dict) else None
    mask_ip2 = image_ip2_dict['layers'][0] if isinstance(image_ip2_dict, dict) and not mask_ip1 else mask_ip1
    image_ip2 = image_ip2_dict['background'] if isinstance(image_ip2_dict, dict) else None
    style_prompt = None
    style_json = None
    hires_before_adetailer = False
    hires_after_adetailer = True
    loop_generation = 1
    leave_progress_bar = True
    disable_progress_bar = False
    image_previews = True
    display_images = False
    save_generated_images = False
    filename_pattern = "model,seed"
    image_storage_location = "./images"
    retain_compel_previous_load = False
    retain_detailfix_model_previous_load = False
    retain_hires_model_previous_load = False
    t2i_adapter_preprocessor = True
    adapter_conditioning_scale = 1
    adapter_conditioning_factor = 0.55
    xformers_memory_efficient_attention = False
    generator_in_cpu = False
    retain_task_cache = False
    load_lora_cpu = False
    verbose_info = False

    images: list[tuple[PIL.Image.Image, str | None]] = []
    progress(0, desc="Preparing...")

    if randomize_seed: seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed).seed()

    if translate:
        prompt = translate_to_en(prompt)
        negative_prompt = translate_to_en(prompt)

    prompt, negative_prompt = insert_model_recom_prompt(prompt, negative_prompt, model_name, recom_prompt)
    progress(0.5, desc="Preparing...")
    lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt = \
        set_prompt_loras(prompt, prompt_syntax, model_name, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt)
    lora1 = get_valid_lora_path(lora1)
    lora2 = get_valid_lora_path(lora2)
    lora3 = get_valid_lora_path(lora3)
    lora4 = get_valid_lora_path(lora4)
    lora5 = get_valid_lora_path(lora5)
    lora6 = get_valid_lora_path(lora6)
    lora7 = get_valid_lora_path(lora7)
    progress(1, desc="Preparation completed. Starting inference...")

    progress(0, desc="Loading model...")
    for _ in sd_gen.load_new_model(valid_model_name(model_name), vae, task, controlnet_model):
        pass
    progress(1, desc="Model loaded.")
    progress(0, desc="Starting Inference...")
    for info_state, stream_images, info_images in sd_gen_generate_pipeline(prompt, negative_prompt, 1, num_inference_steps,
        guidance_scale, clip_skip, generator, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt,
        lora4, lora4_wt, lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt, sampler, schedule_type, schedule_prediction_type,
        height, width, model_name, vae, task, image_control, preprocessor_name, preprocess_resolution, image_resolution,
        style_prompt, style_json, image_mask, strength, low_threshold, high_threshold, value_threshold, distance_threshold,
        recolor_gamma_correction, tile_blur_sigma, control_net_output_scaling, control_net_start_threshold, control_net_stop_threshold,
        active_textual_inversion, prompt_syntax, upscaler_model_path, upscaler_increases_size, upscaler_tile_size, upscaler_tile_overlap,
        hires_steps, hires_denoising_strength, hires_sampler, hires_prompt, hires_negative_prompt, hires_before_adetailer, hires_after_adetailer,
        hires_schedule_type, hires_guidance_scale, controlnet_model, loop_generation, leave_progress_bar, disable_progress_bar, image_previews,
        display_images, save_generated_images, filename_pattern, image_storage_location, retain_compel_previous_load, retain_detailfix_model_previous_load,
        retain_hires_model_previous_load, t2i_adapter_preprocessor, adapter_conditioning_scale, adapter_conditioning_factor, xformers_memory_efficient_attention,
        free_u, generator_in_cpu, adetailer_inpaint_only, adetailer_verbose, adetailer_sampler, adetailer_active_a, prompt_ad_a, negative_prompt_ad_a,
        strength_ad_a, face_detector_ad_a, person_detector_ad_a, hand_detector_ad_a, mask_dilation_a, mask_blur_a, mask_padding_a,
        adetailer_active_b, prompt_ad_b, negative_prompt_ad_b, strength_ad_b, face_detector_ad_b, person_detector_ad_b, hand_detector_ad_b,
        mask_dilation_b, mask_blur_b, mask_padding_b, retain_task_cache, guidance_rescale, image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1,
        image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2, pag_scale, face_restoration_model, face_restoration_visibility, face_restoration_weight,
        load_lora_cpu, verbose_info, gpu_duration
    ):
        images = stream_images if isinstance(stream_images, list) else images
    progress(1, desc="Inference completed.")
    output_image = images[0][0] if images else None

    gc.collect()

    return output_image


#@spaces.GPU
def _infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,

           model_name=load_diffusers_format_model[0], lora1=None, lora1_wt=1.0, lora2=None, lora2_wt=1.0,

           lora3=None, lora3_wt=1.0, lora4=None, lora4_wt=1.0, lora5=None, lora5_wt=1.0, lora6=None, lora6_wt=1.0, lora7=None, lora7_wt=1.0,

           task=TASK_MODEL_LIST[0], prompt_syntax="Classic", sampler="Euler", vae=None, schedule_type=SCHEDULE_TYPE_OPTIONS[0], schedule_prediction_type=SCHEDULE_PREDICTION_TYPE_OPTIONS[0],

           clip_skip=True, pag_scale=0.0, free_u=False, guidance_rescale=0., image_control_dict=None, image_mask=None, strength=0.35, image_resolution=1024,

           controlnet_model=DIFFUSERS_CONTROLNET_MODEL[0], control_net_output_scaling=1.0, control_net_start_threshold=0., control_net_stop_threshold=1.,

           preprocessor_name="Canny", preprocess_resolution=512, low_threshold=100, high_threshold=200,

           value_threshold=0.1, distance_threshold=0.1, recolor_gamma_correction=1., tile_blur_sigma=9,

           image_ip1_dict=None, mask_ip1=None, model_ip1="plus_face", mode_ip1="original", scale_ip1=0.7,

           image_ip2_dict=None, mask_ip2=None, model_ip2="base", mode_ip2="style", scale_ip2=0.7,

           upscaler_model_path=None, upscaler_increases_size=1.0, upscaler_tile_size=0, upscaler_tile_overlap=8, hires_steps=30, hires_denoising_strength=0.55,

           hires_sampler="Use same sampler", hires_schedule_type="Use same schedule type", hires_guidance_scale=-1, hires_prompt="", hires_negative_prompt="",

           adetailer_inpaint_only=True, adetailer_verbose=False, adetailer_sampler="Use same sampler", adetailer_active_a=False,

           prompt_ad_a="", negative_prompt_ad_a="", strength_ad_a=0.35, face_detector_ad_a=True, person_detector_ad_a=True, hand_detector_ad_a=False,

           mask_dilation_a=4, mask_blur_a=4, mask_padding_a=32, adetailer_active_b=False, prompt_ad_b="", negative_prompt_ad_b="", strength_ad_b=0.35,

           face_detector_ad_b=True, person_detector_ad_b=True, hand_detector_ad_b=False, mask_dilation_b=4, mask_blur_b=4, mask_padding_b=32,

           active_textual_inversion=False, face_restoration_model=None, face_restoration_visibility=1., face_restoration_weight=.5,

           gpu_duration=59, translate=False, recom_prompt=True, progress=gr.Progress(track_tqdm=True)):
    return gr.update()


infer.zerogpu = True
_infer.zerogpu = True


def pass_result(result):
    return result


def get_samplers():
    return scheduler_names


def get_vaes():
    return vae_model_list


def update_task_options(model_name, task_name):
    new_choices = MODEL_TYPE_TASK[get_model_type(valid_model_name(model_name))]

    if task_name not in new_choices:
        task_name = "txt2img"

    return gr.update(value=task_name, choices=new_choices)


def change_preprocessor_choices(task):
    task = TASK_STABLEPY[task]
    if task in TASK_AND_PREPROCESSORS.keys():
        choices_task = TASK_AND_PREPROCESSORS[task]
    else:
        choices_task = TASK_AND_PREPROCESSORS["canny"]
    return gr.update(choices=choices_task, value=choices_task[0])


def get_ti_choices(model_name: str):
    return get_embed_list(get_model_pipeline(valid_model_name(model_name)))


def update_textual_inversion(active_textual_inversion: bool, model_name: str):
    return gr.update(choices=get_ti_choices(model_name) if active_textual_inversion else [])


cached_diffusers_model_tupled_list = get_tupled_model_list(load_diffusers_format_model)
def get_diffusers_model_list(state: dict = {}):
    show_diffusers_model_list_detail = get_state(state, "show_diffusers_model_list_detail")
    if show_diffusers_model_list_detail:
        return cached_diffusers_model_tupled_list
    else:
        return load_diffusers_format_model


def enable_diffusers_model_detail(is_enable: bool = False, model_name: str = "", state: dict = {}):
    show_diffusers_model_list_detail = is_enable
    new_value = model_name
    index = 0
    if model_name in set(load_diffusers_format_model):
        index = load_diffusers_format_model.index(model_name)
    if is_enable:
        new_value = cached_diffusers_model_tupled_list[index][1]
    else:
        new_value = load_diffusers_format_model[index]
    set_state(state, "show_diffusers_model_list_detail", show_diffusers_model_list_detail)
    return gr.update(value=is_enable), gr.update(value=new_value, choices=get_diffusers_model_list(state)), state


quality_prompt_list = [
    {
        "name": "None",
        "prompt": "",
        "negative_prompt": "lowres",
    },
    {
        "name": "Animagine Common",
        "prompt": "anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres",
        "negative_prompt": "lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
    },
    {
        "name": "Pony Anime Common",
        "prompt": "source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres",
        "negative_prompt": "source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends",
    },
    {
        "name": "Pony Common",
        "prompt": "source_anime, score_9, score_8_up, score_7_up",
        "negative_prompt": "source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends",
    },
    {
        "name": "Animagine Standard v3.0",
        "prompt": "masterpiece, best quality",
        "negative_prompt": "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name",
    },
    {
        "name": "Animagine Standard v3.1",
        "prompt": "masterpiece, best quality, very aesthetic, absurdres",
        "negative_prompt": "lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
    },
    {
        "name": "Animagine Light v3.1",
        "prompt": "(masterpiece), best quality, very aesthetic, perfect face",
        "negative_prompt": "(low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn",
    },
    {
        "name": "Animagine Heavy v3.1",
        "prompt": "(masterpiece), (best quality), (ultra-detailed), very aesthetic, illustration, disheveled hair, perfect composition, moist skin, intricate details",
        "negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair, extra digit, fewer digits, cropped, worst quality, low quality, very displeasing",
    },
]


style_list = [
    {
        "name": "None",
        "prompt": "",
        "negative_prompt": "",
    },
    {
        "name": "Cinematic",
        "prompt": "cinematic still, emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
        "negative_prompt": "cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
    },
    {
        "name": "Photographic",
        "prompt": "cinematic photo, 35mm photograph, film, bokeh, professional, 4k, highly detailed",
        "negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
    },
    {
        "name": "Anime",
        "prompt": "anime artwork, anime style, vibrant, studio anime, highly detailed",
        "negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
    },
    {
        "name": "Manga",
        "prompt": "manga style, vibrant, high-energy, detailed, iconic, Japanese comic style",
        "negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
    },
    {
        "name": "Digital Art",
        "prompt": "concept art, digital artwork, illustrative, painterly, matte painting, highly detailed",
        "negative_prompt": "photo, photorealistic, realism, ugly",
    },
    {
        "name": "Pixel art",
        "prompt": "pixel-art, low-res, blocky, pixel art style, 8-bit graphics",
        "negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
    },
    {
        "name": "Fantasy art",
        "prompt": "ethereal fantasy concept art, magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
        "negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
    },
    {
        "name": "Neonpunk",
        "prompt": "neonpunk style, cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
        "negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
    },
    {
        "name": "3D Model",
        "prompt": "professional 3d model, octane render, highly detailed, volumetric, dramatic lighting",
        "negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
    },
]


preset_styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
preset_quality = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in quality_prompt_list}


def process_style_prompt(prompt: str, neg_prompt: str, styles_key: str = "None", quality_key: str = "None"):
    def to_list(s):
        return [x.strip() for x in s.split(",") if not s == ""]
    
    def list_sub(a, b):
        return [e for e in a if e not in b]
    
    def list_uniq(l):
        return sorted(set(l), key=l.index)

    animagine_ps = to_list("anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres")
    animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
    pony_ps = to_list("source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres")
    pony_nps = to_list("source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends")
    prompts = to_list(prompt)
    neg_prompts = to_list(neg_prompt)

    all_styles_ps = []
    all_styles_nps = []
    for d in style_list:
        all_styles_ps.extend(to_list(str(d.get("prompt", ""))))
        all_styles_nps.extend(to_list(str(d.get("negative_prompt", ""))))

    all_quality_ps = []
    all_quality_nps = []
    for d in quality_prompt_list:
        all_quality_ps.extend(to_list(str(d.get("prompt", ""))))
        all_quality_nps.extend(to_list(str(d.get("negative_prompt", ""))))

    quality_ps = to_list(preset_quality[quality_key][0])
    quality_nps = to_list(preset_quality[quality_key][1])
    styles_ps = to_list(preset_styles[styles_key][0])
    styles_nps = to_list(preset_styles[styles_key][1])

    prompts = list_sub(prompts, animagine_ps + pony_ps + all_styles_ps + all_quality_ps)
    neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps + all_styles_nps + all_quality_nps)

    last_empty_p = [""] if not prompts and type != "None" and type != "Auto" and styles_key != "None" and quality_key != "None" else []
    last_empty_np = [""] if not neg_prompts and type != "None" and type != "Auto" and styles_key != "None" and quality_key != "None" else []

    if type == "Animagine":
        prompts = prompts + animagine_ps
        neg_prompts = neg_prompts + animagine_nps
    elif type == "Pony":
        prompts = prompts + pony_ps
        neg_prompts = neg_prompts + pony_nps

    prompts = prompts + styles_ps + quality_ps
    neg_prompts = neg_prompts + styles_nps + quality_nps

    prompt = ", ".join(list_uniq(prompts) + last_empty_p)
    neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np)

    return gr.update(value=prompt), gr.update(value=neg_prompt)


def save_images(images: list[Image.Image], metadatas: list[str]):
    from PIL import PngImagePlugin
    try:
        output_images = []
        for image, metadata in zip(images, metadatas):
            info = PngImagePlugin.PngInfo()
            info.add_text("parameters", metadata)
            savefile = "image.png"
            image.save(savefile, "PNG", pnginfo=info)
            output_images.append(str(Path(savefile).resolve()))
        return output_images
    except Exception as e:
        print(f"Failed to save image file: {e}")
        raise Exception(f"Failed to save image file:") from e