John6666's picture
Upload 6 files
52ebc2a verified
raw
history blame
29.3 kB
import spaces
import gradio as gr
import numpy as np
# DiffuseCraft
from dc import (infer, _infer, pass_result, get_diffusers_model_list, get_samplers,
get_vaes, enable_model_recom_prompt, enable_diffusers_model_detail, extract_exif_data, esrgan_upscale, UPSCALER_KEYS,
preset_quality, preset_styles, process_style_prompt, get_all_lora_tupled_list, update_loras, apply_lora_prompt,
download_my_lora, search_civitai_lora, update_civitai_selection, select_civitai_lora, search_civitai_lora_json)
from modutils import get_t2i_model_info, get_civitai_tag, CIVITAI_SORT, CIVITAI_PERIOD, CIVITAI_BASEMODEL
# Translator
from llmdolphin import (dolphin_respond_auto, dolphin_parse_simple,
get_llm_formats, get_dolphin_model_format, get_dolphin_models,
get_dolphin_model_info, select_dolphin_model, select_dolphin_format, get_dolphin_sysprompt)
# Tagger
from tagger.v2 import v2_upsampling_prompt, V2_ALL_MODELS
from tagger.utils import (gradio_copy_text, gradio_copy_prompt, COPY_ACTION_JS,
V2_ASPECT_RATIO_OPTIONS, V2_RATING_OPTIONS, V2_LENGTH_OPTIONS, V2_IDENTITY_OPTIONS)
from tagger.tagger import (predict_tags_wd, convert_danbooru_to_e621_prompt,
remove_specific_prompt, insert_recom_prompt, compose_prompt_to_copy,
translate_prompt, select_random_character)
from tagger.fl2sd3longcap import predict_tags_fl2_sd3
def description_ui():
gr.Markdown(
"""
## Danbooru Tags Transformer V2 Demo with WD Tagger & SD3 Long Captioner
(Image =>) Prompt => Upsampled longer prompt
- Mod of p1atdev's [Danbooru Tags Transformer V2 Demo](https://huggingface.co/spaces/p1atdev/danbooru-tags-transformer-v2) and [WD Tagger with 🤗 transformers](https://huggingface.co/spaces/p1atdev/wd-tagger-transformers).
- Models: p1atdev's [wd-swinv2-tagger-v3-hf](https://huggingface.co/p1atdev/wd-swinv2-tagger-v3-hf), [dart-v2-moe-sft](https://huggingface.co/p1atdev/dart-v2-moe-sft), [dart-v2-sft](https://huggingface.co/p1atdev/dart-v2-sft)\
, gokaygokay's [Florence-2-SD3-Captioner](https://huggingface.co/gokaygokay/Florence-2-SD3-Captioner)
"""
)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216
css = """
#container { margin: 0 auto; !important; }
#col-container { margin: 0 auto; !important; }
#result { max-width: 520px; max-height: 520px; margin: 0px auto; !important; }
.lora { min-width: 480px; !important; }
.title { font-size: 3em; align-items: center; text-align: center; }
.info { align-items: center; text-align: center; }
.desc [src$='#float'] { float: right; margin: 20px; }
"""
with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60, 3600)) as demo:
gr.Markdown("# Votepurchase Multiple Model", elem_classes="title")
with gr.Tab("Image Generator"):
with gr.Column(elem_id="col-container"):
with gr.Row():
prompt = gr.Text(label="Prompt", show_label=False, lines=1, max_lines=8, placeholder="Enter your prompt", container=False)
with gr.Row():
run_button = gr.Button("Run", variant="primary", scale=5)
run_translate_button = gr.Button("Run with LLM Enhance", variant="secondary", scale=3)
auto_trans = gr.Checkbox(label="Auto translate to English", value=False, scale=2)
result = gr.Image(label="Result", elem_id="result", format="png", show_label=False, interactive=False,
show_download_button=True, show_share_button=False, container=True)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
negative_prompt = gr.Text(label="Negative prompt", lines=1, max_lines=6, placeholder="Enter a negative prompt",
value="(low quality, worst quality:1.2), very displeasing, watermark, signature, ugly")
with gr.Row():
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) # 832
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) # 1216
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=30.0, step=0.1, value=7)
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=100, step=1, value=28)
with gr.Row():
with gr.Column(scale=4):
model_name = gr.Dropdown(label="Model", info="You can enter a huggingface model repo_id to want to use.",
choices=get_diffusers_model_list(), value=get_diffusers_model_list()[0],
allow_custom_value=True, interactive=True, min_width=320)
model_info = gr.Markdown(elem_classes="info")
with gr.Column(scale=1):
model_detail = gr.Checkbox(label="Show detail of model in list", value=False)
with gr.Row():
sampler = gr.Dropdown(label="Sampler", choices=get_samplers(), value="Euler a")
vae_model = gr.Dropdown(label="VAE Model", choices=get_vaes(), value=get_vaes()[0])
with gr.Accordion("LoRA", open=True, visible=True):
def lora_dropdown(label):
return gr.Dropdown(label=label, choices=get_all_lora_tupled_list(), value="", allow_custom_value=True, elem_classes="lora", min_width=320)
def lora_scale_slider(label):
return gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label=label)
def lora_textbox():
return gr.Textbox(label="", info="Example of prompt:", value="", show_copy_button=True, interactive=False, visible=False)
with gr.Row():
with gr.Column():
with gr.Row():
lora1 = lora_dropdown("LoRA 1")
lora1_wt = lora_scale_slider("LoRA 1: weight")
with gr.Row():
lora1_info = lora_textbox()
lora1_copy = gr.Button(value="Copy example to prompt", visible=False)
lora1_md = gr.Markdown(value="", visible=False)
with gr.Column():
with gr.Row():
lora2 = lora_dropdown("LoRA 2")
lora2_wt = lora_scale_slider("LoRA 2: weight")
with gr.Row():
lora2_info = lora_textbox()
lora2_copy = gr.Button(value="Copy example to prompt", visible=False)
lora2_md = gr.Markdown(value="", visible=False)
with gr.Column():
with gr.Row():
lora3 = lora_dropdown("LoRA 3")
lora3_wt = lora_scale_slider("LoRA 3: weight")
with gr.Row():
lora3_info = lora_textbox()
lora3_copy = gr.Button(value="Copy example to prompt", visible=False)
lora3_md = gr.Markdown(value="", visible=False)
with gr.Column():
with gr.Row():
lora4 = lora_dropdown("LoRA 4")
lora4_wt = lora_scale_slider("LoRA 4: weight")
with gr.Row():
lora4_info = lora_textbox()
lora4_copy = gr.Button(value="Copy example to prompt", visible=False)
lora4_md = gr.Markdown(value="", visible=False)
with gr.Column():
with gr.Row():
lora5 = lora_dropdown("LoRA 5")
lora5_wt = lora_scale_slider("LoRA 5: weight")
with gr.Row():
lora5_info = lora_textbox()
lora5_copy = gr.Button(value="Copy example to prompt", visible=False)
lora5_md = gr.Markdown(value="", visible=False)
with gr.Accordion("From URL", open=True, visible=True):
with gr.Row():
lora_search_civitai_basemodel = gr.CheckboxGroup(label="Search LoRA for", choices=CIVITAI_BASEMODEL, value=["Pony", "SDXL 1.0"])
lora_search_civitai_sort = gr.Radio(label="Sort", choices=CIVITAI_SORT, value="Highest Rated")
lora_search_civitai_period = gr.Radio(label="Period", choices=CIVITAI_PERIOD, value="AllTime")
with gr.Row():
lora_search_civitai_query = gr.Textbox(label="Query", placeholder="oomuro sakurako...", lines=1)
lora_search_civitai_tag = gr.Dropdown(label="Tag", choices=get_civitai_tag(), value=get_civitai_tag()[0], allow_custom_value=True)
lora_search_civitai_user = gr.Textbox(label="Username", lines=1)
lora_search_civitai_submit = gr.Button("Search on Civitai")
with gr.Row():
lora_search_civitai_json = gr.JSON(value={}, visible=False)
lora_search_civitai_desc = gr.Markdown(value="", visible=False, elem_classes="desc")
with gr.Accordion("Select from Gallery", open=False):
lora_search_civitai_gallery = gr.Gallery([], label="Results", allow_preview=False, columns=5, show_share_button=False, interactive=False)
lora_search_civitai_result = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False)
lora_download_url = gr.Textbox(label="LoRA URL", placeholder="https://civitai.com/api/download/models/28907", lines=1)
lora_download = gr.Button("Get and set LoRA and apply to prompt")
with gr.Row():
quality_selector = gr.Radio(label="Quality Tag Presets", interactive=True, choices=list(preset_quality.keys()), value="None", scale=3)
style_selector = gr.Radio(label="Style Presets", interactive=True, choices=list(preset_styles.keys()), value="None", scale=3)
recom_prompt = gr.Checkbox(label="Recommended prompt", value=True, scale=1)
with gr.Accordion("Translation Settings", open=False):
chatbot = gr.Chatbot(render_markdown=False, visible=False) # component for auto-translation
chat_model = gr.Dropdown(choices=get_dolphin_models(), value=get_dolphin_models()[0][1], allow_custom_value=True, label="Model")
chat_model_info = gr.Markdown(value=get_dolphin_model_info(get_dolphin_models()[0][1]), label="Model info")
chat_format = gr.Dropdown(choices=get_llm_formats(), value=get_dolphin_model_format(get_dolphin_models()[0][1]), label="Message format")
with gr.Row():
chat_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max tokens")
chat_temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
chat_topp = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
chat_topk = gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k")
chat_rp = gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty")
chat_sysmsg = gr.Textbox(value=get_dolphin_sysprompt(), label="System message")
examples = gr.Examples(
examples = [
["souryuu asuka langley, 1girl, neon genesis evangelion, plugsuit, pilot suit, red bodysuit, sitting, crossing legs, black eye patch, cat hat, throne, symmetrical, looking down, from bottom, looking at viewer, outdoors"],
["sailor moon, magical girl transformation, sparkles and ribbons, soft pastel colors, crescent moon motif, starry night sky background, shoujo manga style"],
["kafuu chino, 1girl, solo"],
["1girl"],
["beautiful sunset"],
],
inputs=[prompt],
cache_examples=False,
)
gr.on( #lambda x: None, inputs=None, outputs=result).then(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
guidance_scale, num_inference_steps, model_name,
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
sampler, vae_model, auto_trans],
outputs=[result],
queue=True,
show_progress="full",
show_api=True,
)
gr.on( #lambda x: None, inputs=None, outputs=result).then(
triggers=[run_translate_button.click],
fn=_infer, # dummy fn for api
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
guidance_scale, num_inference_steps, model_name,
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
sampler, vae_model, auto_trans],
outputs=[result],
queue=False,
show_api=True,
api_name="infer_translate",
).success(
fn=dolphin_respond_auto,
inputs=[prompt, chatbot],
outputs=[chatbot],
queue=True,
show_progress="full",
show_api=False,
).success(
fn=dolphin_parse_simple,
inputs=[prompt, chatbot],
outputs=[prompt],
queue=False,
show_api=False,
).success(
fn=infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
guidance_scale, num_inference_steps, model_name,
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
sampler, vae_model],
outputs=[result],
queue=True,
show_progress="full",
show_api=False,
).success(lambda: None, None, chatbot, queue=False, show_api=False)\
.success(pass_result, [result], [result], queue=False, show_api=False) # dummy fn for api
gr.on(
triggers=[lora1.change, lora1_wt.change, lora2.change, lora2_wt.change, lora3.change, lora3_wt.change,
lora4.change, lora4_wt.change, lora5.change, lora5_wt.change],
fn=update_loras,
inputs=[prompt, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt],
outputs=[prompt, lora1, lora1_wt, lora1_info, lora1_copy, lora1_md,
lora2, lora2_wt, lora2_info, lora2_copy, lora2_md, lora3, lora3_wt, lora3_info, lora3_copy, lora3_md,
lora4, lora4_wt, lora4_info, lora4_copy, lora4_md, lora5, lora5_wt, lora5_info, lora5_copy, lora5_md],
queue=False,
trigger_mode="once",
show_api=False,
)
lora1_copy.click(apply_lora_prompt, [prompt, lora1_info], [prompt], queue=False, show_api=False)
lora2_copy.click(apply_lora_prompt, [prompt, lora2_info], [prompt], queue=False, show_api=False)
lora3_copy.click(apply_lora_prompt, [prompt, lora3_info], [prompt], queue=False, show_api=False)
lora4_copy.click(apply_lora_prompt, [prompt, lora4_info], [prompt], queue=False, show_api=False)
lora5_copy.click(apply_lora_prompt, [prompt, lora5_info], [prompt], queue=False, show_api=False)
gr.on(
triggers=[lora_search_civitai_submit.click, lora_search_civitai_query.submit],
fn=search_civitai_lora,
inputs=[lora_search_civitai_query, lora_search_civitai_basemodel, lora_search_civitai_sort, lora_search_civitai_period, lora_search_civitai_tag, lora_search_civitai_user, lora_search_civitai_gallery],
outputs=[lora_search_civitai_result, lora_search_civitai_desc, lora_search_civitai_submit, lora_search_civitai_query, lora_search_civitai_gallery],
scroll_to_output=True,
queue=True,
show_api=False,
)
lora_search_civitai_json.change(search_civitai_lora_json, [lora_search_civitai_query, lora_search_civitai_basemodel], [lora_search_civitai_json], queue=True, show_api=True) # fn for api
lora_search_civitai_result.change(select_civitai_lora, [lora_search_civitai_result], [lora_download_url, lora_search_civitai_desc], scroll_to_output=True, queue=False, show_api=False)
gr.on(
triggers=[lora_download.click, lora_download_url.submit],
fn=download_my_lora,
inputs=[lora_download_url,lora1, lora2, lora3, lora4, lora5],
outputs=[lora1, lora2, lora3, lora4, lora5],
scroll_to_output=True,
queue=True,
show_api=False,
)
lora_search_civitai_gallery.select(update_civitai_selection, None, [lora_search_civitai_result], queue=False, show_api=False)
recom_prompt.change(enable_model_recom_prompt, [recom_prompt], [recom_prompt], queue=False, show_api=False)
gr.on(
triggers=[quality_selector.change, style_selector.change],
fn=process_style_prompt,
inputs=[prompt, negative_prompt, style_selector, quality_selector],
outputs=[prompt, negative_prompt],
queue=False,
trigger_mode="once",
)
model_detail.change(enable_diffusers_model_detail, [model_detail, model_name], [model_detail, model_name], queue=False, show_api=False)
model_name.change(get_t2i_model_info, [model_name], [model_info], queue=False, show_api=False)
chat_model.change(select_dolphin_model, [chat_model], [chat_model, chat_format, chat_model_info], queue=True, show_progress="full", show_api=False)\
.success(lambda: None, None, chatbot, queue=False, show_api=False)
chat_format.change(select_dolphin_format, [chat_format], [chat_format], queue=False, show_api=False)\
.success(lambda: None, None, chatbot, queue=False, show_api=False)
# Tagger
with gr.Tab("Tags Transformer with Tagger"):
with gr.Column():
with gr.Group():
input_image = gr.Image(label="Input image", type="pil", sources=["upload", "clipboard"], height=256)
with gr.Accordion(label="Advanced options", open=False):
general_threshold = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True)
character_threshold = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True)
input_tag_type = gr.Radio(label="Convert tags to", info="danbooru for Animagine, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru")
recom_prompt = gr.Radio(label="Insert reccomended prompt", choices=["None", "Animagine", "Pony"], value="None", interactive=True)
image_algorithms = gr.CheckboxGroup(["Use WD Tagger", "Use Florence-2-SD3-Long-Captioner"], label="Algorithms", value=["Use WD Tagger"])
keep_tags = gr.Radio(label="Remove tags leaving only the following", choices=["body", "dress", "all"], value="all")
generate_from_image_btn = gr.Button(value="GENERATE TAGS FROM IMAGE", size="lg", variant="primary")
with gr.Group():
with gr.Row():
input_character = gr.Textbox(label="Character tags", placeholder="hatsune miku")
input_copyright = gr.Textbox(label="Copyright tags", placeholder="vocaloid")
random_character = gr.Button(value="Random character 🎲", size="sm")
input_general = gr.TextArea(label="General tags", lines=4, placeholder="1girl, ...", value="")
input_tags_to_copy = gr.Textbox(value="", visible=False)
with gr.Row():
copy_input_btn = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
copy_prompt_btn_input = gr.Button(value="Copy to primary prompt", size="sm", interactive=False)
translate_input_prompt_button = gr.Button(value="Translate prompt to English", size="sm", variant="secondary")
tag_type = gr.Radio(label="Output tag conversion", info="danbooru for Animagine, e621 for Pony.", choices=["danbooru", "e621"], value="e621", visible=False)
input_rating = gr.Radio(label="Rating", choices=list(V2_RATING_OPTIONS), value="explicit")
with gr.Accordion(label="Advanced options", open=False):
input_aspect_ratio = gr.Radio(label="Aspect ratio", info="The aspect ratio of the image.", choices=list(V2_ASPECT_RATIO_OPTIONS), value="square")
input_length = gr.Radio(label="Length", info="The total length of the tags.", choices=list(V2_LENGTH_OPTIONS), value="very_long")
input_identity = gr.Radio(label="Keep identity", info="How strictly to keep the identity of the character or subject. If you specify the detail of subject in the prompt, you should choose `strict`. Otherwise, choose `none` or `lax`. `none` is very creative but sometimes ignores the input prompt.", choices=list(V2_IDENTITY_OPTIONS), value="lax")
input_ban_tags = gr.Textbox(label="Ban tags", info="Tags to ban from the output.", placeholder="alternate costumen, ...", value="censored")
model_name = gr.Dropdown(label="Model", choices=list(V2_ALL_MODELS.keys()), value=list(V2_ALL_MODELS.keys())[0])
dummy_np = gr.Textbox(label="Negative prompt", value="", visible=False)
recom_animagine = gr.Textbox(label="Animagine reccomended prompt", value="Animagine", visible=False)
recom_pony = gr.Textbox(label="Pony reccomended prompt", value="Pony", visible=False)
generate_btn = gr.Button(value="GENERATE TAGS", size="lg", variant="primary")
with gr.Row():
with gr.Group():
output_text = gr.TextArea(label="Output tags", interactive=False, show_copy_button=True)
with gr.Row():
copy_btn = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
copy_prompt_btn = gr.Button(value="Copy to primary prompt", size="sm", interactive=False)
with gr.Group():
output_text_pony = gr.TextArea(label="Output tags (Pony e621 style)", interactive=False, show_copy_button=True)
with gr.Row():
copy_btn_pony = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
copy_prompt_btn_pony = gr.Button(value="Copy to primary prompt", size="sm", interactive=False)
random_character.click(select_random_character, [input_copyright, input_character], [input_copyright, input_character], queue=False, show_api=False)
translate_input_prompt_button.click(translate_prompt, [input_general], [input_general], queue=False, show_api=False)
translate_input_prompt_button.click(translate_prompt, [input_character], [input_character], queue=False, show_api=False)
translate_input_prompt_button.click(translate_prompt, [input_copyright], [input_copyright], queue=False, show_api=False)
generate_from_image_btn.click(
lambda: ("", "", ""), None, [input_copyright, input_character, input_general], queue=False, show_api=False,
).success(
predict_tags_wd,
[input_image, input_general, image_algorithms, general_threshold, character_threshold],
[input_copyright, input_character, input_general, copy_input_btn],
show_api=False,
).success(
predict_tags_fl2_sd3, [input_image, input_general, image_algorithms], [input_general], show_api=False,
).success(
remove_specific_prompt, [input_general, keep_tags], [input_general], queue=False, show_api=False,
).success(
convert_danbooru_to_e621_prompt, [input_general, input_tag_type], [input_general], queue=False, show_api=False,
).success(
insert_recom_prompt, [input_general, dummy_np, recom_prompt], [input_general, dummy_np], queue=False, show_api=False,
).success(lambda: gr.update(interactive=True), None, [copy_prompt_btn_input], queue=False, show_api=False)
copy_input_btn.click(compose_prompt_to_copy, [input_character, input_copyright, input_general], [input_tags_to_copy], show_api=False)\
.success(gradio_copy_text, [input_tags_to_copy], js=COPY_ACTION_JS, show_api=False)
copy_prompt_btn_input.click(compose_prompt_to_copy, inputs=[input_character, input_copyright, input_general], outputs=[input_tags_to_copy], show_api=False)\
.success(gradio_copy_prompt, inputs=[input_tags_to_copy], outputs=[prompt], show_api=False)
generate_btn.click(
v2_upsampling_prompt,
[model_name, input_copyright, input_character, input_general,
input_rating, input_aspect_ratio, input_length, input_identity, input_ban_tags],
[output_text],
show_api=False,
).success(
convert_danbooru_to_e621_prompt, [output_text, tag_type], [output_text_pony], queue=False, show_api=False,
).success(
insert_recom_prompt, [output_text, dummy_np, recom_animagine], [output_text, dummy_np], queue=False, show_api=False,
).success(
insert_recom_prompt, [output_text_pony, dummy_np, recom_pony], [output_text_pony, dummy_np], queue=False, show_api=False,
).success(lambda: (gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)),
None, [copy_btn, copy_btn_pony, copy_prompt_btn, copy_prompt_btn_pony], queue=False, show_api=False)
copy_btn.click(gradio_copy_text, [output_text], js=COPY_ACTION_JS, show_api=False)
copy_btn_pony.click(gradio_copy_text, [output_text_pony], js=COPY_ACTION_JS, show_api=False)
copy_prompt_btn.click(gradio_copy_prompt, inputs=[output_text], outputs=[prompt], show_api=False)
copy_prompt_btn_pony.click(gradio_copy_prompt, inputs=[output_text_pony], outputs=[prompt], show_api=False)
with gr.Tab("PNG Info"):
with gr.Row():
with gr.Column():
image_metadata = gr.Image(label="Image with metadata", type="pil", sources=["upload"])
with gr.Column():
result_metadata = gr.Textbox(label="Metadata", show_label=True, show_copy_button=True, interactive=False, container=True, max_lines=99)
image_metadata.change(
fn=extract_exif_data,
inputs=[image_metadata],
outputs=[result_metadata],
)
with gr.Tab("Upscaler"):
with gr.Row():
with gr.Column():
image_up_tab = gr.Image(label="Image", type="pil", sources=["upload"])
upscaler_tab = gr.Dropdown(label="Upscaler", choices=UPSCALER_KEYS[9:], value=UPSCALER_KEYS[11])
upscaler_size_tab = gr.Slider(minimum=1., maximum=4., step=0.1, value=1.1, label="Upscale by")
generate_button_up_tab = gr.Button(value="START UPSCALE", variant="primary")
with gr.Column():
result_up_tab = gr.Image(label="Result", type="pil", interactive=False, format="png")
generate_button_up_tab.click(
fn=esrgan_upscale,
inputs=[image_up_tab, upscaler_tab, upscaler_size_tab],
outputs=[result_up_tab],
)
gr.LoginButton()
gr.DuplicateButton(value="Duplicate Space for private use (This demo does not work on CPU. Requires GPU Space)")
demo.queue()
demo.launch()