from __future__ import annotations from typing import TYPE_CHECKING, List import logging import json import commentjson as cjson import os import sys import requests import urllib3 import platform from tqdm import tqdm import colorama from duckduckgo_search import ddg import asyncio import aiohttp from enum import Enum import uuid from .presets import * from .llama_func import * from .utils import * from . import shared from .config import retrieve_proxy from modules import config from .base_model import BaseLLMModel, ModelType class OpenAIClient(BaseLLMModel): def __init__( self, model_name, api_key, system_prompt=INITIAL_SYSTEM_PROMPT, temperature=1.0, top_p=1.0, ) -> None: super().__init__( model_name=model_name, temperature=temperature, top_p=top_p, system_prompt=system_prompt, ) self.api_key = api_key self.need_api_key = True self._refresh_header() def get_answer_stream_iter(self): response = self._get_response(stream=True) if response is not None: iter = self._decode_chat_response(response) partial_text = "" for i in iter: partial_text += i yield partial_text else: yield STANDARD_ERROR_MSG + GENERAL_ERROR_MSG def get_answer_at_once(self): response = self._get_response() response = json.loads(response.text) content = response["choices"][0]["message"]["content"] total_token_count = response["usage"]["total_tokens"] return content, total_token_count def count_token(self, user_input): input_token_count = count_token(construct_user(user_input)) if self.system_prompt is not None and len(self.all_token_counts) == 0: system_prompt_token_count = count_token( construct_system(self.system_prompt) ) return input_token_count + system_prompt_token_count return input_token_count def billing_info(self): try: curr_time = datetime.datetime.now() last_day_of_month = get_last_day_of_month( curr_time).strftime("%Y-%m-%d") first_day_of_month = curr_time.replace(day=1).strftime("%Y-%m-%d") usage_url = f"{shared.state.usage_api_url}?start_date={first_day_of_month}&end_date={last_day_of_month}" try: usage_data = self._get_billing_data(usage_url) except Exception as e: logging.error(f"获取API使用情况失败:" + str(e)) return f"**获取API使用情况失败**" rounded_usage = "{:.5f}".format(usage_data["total_usage"] / 100) return f"**本月使用金额** \u3000 ${rounded_usage}" except requests.exceptions.ConnectTimeout: status_text = ( STANDARD_ERROR_MSG + CONNECTION_TIMEOUT_MSG + ERROR_RETRIEVE_MSG ) return status_text except requests.exceptions.ReadTimeout: status_text = STANDARD_ERROR_MSG + READ_TIMEOUT_MSG + ERROR_RETRIEVE_MSG return status_text except Exception as e: logging.error(f"获取API使用情况失败:" + str(e)) return STANDARD_ERROR_MSG + ERROR_RETRIEVE_MSG def set_token_upper_limit(self, new_upper_limit): pass def set_key(self, new_access_key): self.api_key = new_access_key.strip() self._refresh_header() msg = f"API密钥更改为了{hide_middle_chars(self.api_key)}" logging.info(msg) return msg @shared.state.switching_api_key # 在不开启多账号模式的时候,这个装饰器不会起作用 def _get_response(self, stream=False): openai_api_key = self.api_key system_prompt = self.system_prompt history = self.history logging.debug(colorama.Fore.YELLOW + f"{history}" + colorama.Fore.RESET) headers = { "Content-Type": "application/json", "Authorization": f"Bearer {openai_api_key}", } if system_prompt is not None: history = [construct_system(system_prompt), *history] payload = { "model": self.model_name, "messages": history, "temperature": self.temperature, "top_p": self.top_p, "n": self.n_choices, "stream": stream, "presence_penalty": self.presence_penalty, "frequency_penalty": self.frequency_penalty, } if self.max_generation_token is not None: payload["max_tokens"] = self.max_generation_token if self.stop_sequence is not None: payload["stop"] = self.stop_sequence if self.logit_bias is not None: payload["logit_bias"] = self.logit_bias if self.user_identifier is not None: payload["user"] = self.user_identifier if stream: timeout = TIMEOUT_STREAMING else: timeout = TIMEOUT_ALL # 如果有自定义的api-host,使用自定义host发送请求,否则使用默认设置发送请求 if shared.state.completion_url != COMPLETION_URL: logging.info(f"使用自定义API URL: {shared.state.completion_url}") with retrieve_proxy(): try: response = requests.post( shared.state.completion_url, headers=headers, json=payload, stream=stream, timeout=timeout, ) except: return None return response def _refresh_header(self): self.headers = { "Content-Type": "application/json", "Authorization": f"Bearer {self.api_key}", } def _get_billing_data(self, billing_url): with retrieve_proxy(): response = requests.get( billing_url, headers=self.headers, timeout=TIMEOUT_ALL, ) if response.status_code == 200: data = response.json() return data else: raise Exception( f"API request failed with status code {response.status_code}: {response.text}" ) def _decode_chat_response(self, response): error_msg = "" for chunk in response.iter_lines(): if chunk: chunk = chunk.decode() chunk_length = len(chunk) try: chunk = json.loads(chunk[6:]) except json.JSONDecodeError: print(f"JSON解析错误,收到的内容: {chunk}") error_msg += chunk continue if chunk_length > 6 and "delta" in chunk["choices"][0]: if chunk["choices"][0]["finish_reason"] == "stop": break try: yield chunk["choices"][0]["delta"]["content"] except Exception as e: # logging.error(f"Error: {e}") continue if error_msg: raise Exception(error_msg) class ChatGLM_Client(BaseLLMModel): def __init__(self, model_name) -> None: super().__init__(model_name=model_name) from transformers import AutoTokenizer, AutoModel import torch global CHATGLM_TOKENIZER, CHATGLM_MODEL if CHATGLM_TOKENIZER is None or CHATGLM_MODEL is None: system_name = platform.system() model_path = None if os.path.exists("models"): model_dirs = os.listdir("models") if model_name in model_dirs: model_path = f"models/{model_name}" if model_path is not None: model_source = model_path else: model_source = f"THUDM/{model_name}" CHATGLM_TOKENIZER = AutoTokenizer.from_pretrained( model_source, trust_remote_code=True ) quantified = False if "int4" in model_name: quantified = True if quantified: model = AutoModel.from_pretrained( model_source, trust_remote_code=True ).half() else: model = AutoModel.from_pretrained( model_source, trust_remote_code=True ).half() if torch.cuda.is_available(): # run on CUDA logging.info("CUDA is available, using CUDA") model = model.cuda() # mps加速还存在一些问题,暂时不使用 elif system_name == "Darwin" and model_path is not None and not quantified: logging.info("Running on macOS, using MPS") # running on macOS and model already downloaded model = model.to("mps") else: logging.info("GPU is not available, using CPU") model = model.eval() CHATGLM_MODEL = model def _get_glm_style_input(self): history = [x["content"] for x in self.history] query = history.pop() logging.debug(colorama.Fore.YELLOW + f"{history}" + colorama.Fore.RESET) assert ( len(history) % 2 == 0 ), f"History should be even length. current history is: {history}" history = [[history[i], history[i + 1]] for i in range(0, len(history), 2)] return history, query def get_answer_at_once(self): history, query = self._get_glm_style_input() response, _ = CHATGLM_MODEL.chat( CHATGLM_TOKENIZER, query, history=history) return response, len(response) def get_answer_stream_iter(self): history, query = self._get_glm_style_input() for response, history in CHATGLM_MODEL.stream_chat( CHATGLM_TOKENIZER, query, history, max_length=self.token_upper_limit, top_p=self.top_p, temperature=self.temperature, ): yield response class LLaMA_Client(BaseLLMModel): def __init__( self, model_name, lora_path=None, ) -> None: super().__init__(model_name=model_name) from lmflow.datasets.dataset import Dataset from lmflow.pipeline.auto_pipeline import AutoPipeline from lmflow.models.auto_model import AutoModel from lmflow.args import ModelArguments, DatasetArguments, InferencerArguments self.max_generation_token = 1000 self.end_string = "\n\n" # We don't need input data data_args = DatasetArguments(dataset_path=None) self.dataset = Dataset(data_args) self.system_prompt = "" global LLAMA_MODEL, LLAMA_INFERENCER if LLAMA_MODEL is None or LLAMA_INFERENCER is None: model_path = None if os.path.exists("models"): model_dirs = os.listdir("models") if model_name in model_dirs: model_path = f"models/{model_name}" if model_path is not None: model_source = model_path else: model_source = f"decapoda-research/{model_name}" # raise Exception(f"models目录下没有这个模型: {model_name}") if lora_path is not None: lora_path = f"lora/{lora_path}" model_args = ModelArguments(model_name_or_path=model_source, lora_model_path=lora_path, model_type=None, config_overrides=None, config_name=None, tokenizer_name=None, cache_dir=None, use_fast_tokenizer=True, model_revision='main', use_auth_token=False, torch_dtype=None, use_lora=False, lora_r=8, lora_alpha=32, lora_dropout=0.1, use_ram_optimized_load=True) pipeline_args = InferencerArguments( local_rank=0, random_seed=1, deepspeed='configs/ds_config_chatbot.json', mixed_precision='bf16') with open(pipeline_args.deepspeed, "r") as f: ds_config = json.load(f) LLAMA_MODEL = AutoModel.get_model( model_args, tune_strategy="none", ds_config=ds_config, ) LLAMA_INFERENCER = AutoPipeline.get_pipeline( pipeline_name="inferencer", model_args=model_args, data_args=data_args, pipeline_args=pipeline_args, ) # Chats # model_name = model_args.model_name_or_path # if model_args.lora_model_path is not None: # model_name += f" + {model_args.lora_model_path}" # context = ( # "You are a helpful assistant who follows the given instructions" # " unconditionally." # ) def _get_llama_style_input(self): history = [] instruction = "" if self.system_prompt: instruction = (f"Instruction: {self.system_prompt}\n") for x in self.history: if x["role"] == "user": history.append(f"{instruction}Input: {x['content']}") else: history.append(f"Output: {x['content']}") context = "\n\n".join(history) context += "\n\nOutput: " return context def get_answer_at_once(self): context = self._get_llama_style_input() input_dataset = self.dataset.from_dict( {"type": "text_only", "instances": [{"text": context}]} ) output_dataset = LLAMA_INFERENCER.inference( model=LLAMA_MODEL, dataset=input_dataset, max_new_tokens=self.max_generation_token, temperature=self.temperature, ) response = output_dataset.to_dict()["instances"][0]["text"] return response, len(response) def get_answer_stream_iter(self): context = self._get_llama_style_input() partial_text = "" step = 1 for _ in range(0, self.max_generation_token, step): input_dataset = self.dataset.from_dict( {"type": "text_only", "instances": [ {"text": context + partial_text}]} ) output_dataset = LLAMA_INFERENCER.inference( model=LLAMA_MODEL, dataset=input_dataset, max_new_tokens=step, temperature=self.temperature, ) response = output_dataset.to_dict()["instances"][0]["text"] if response == "" or response == self.end_string: break partial_text += response yield partial_text class XMBot_Client(BaseLLMModel): def __init__(self, api_key): super().__init__(model_name="xmbot") self.api_key = api_key self.session_id = None self.reset() self.image_bytes = None self.image_path = None self.xm_history = [] self.url = "https://xmbot.net/web" def reset(self): self.session_id = str(uuid.uuid4()) return [], "已重置" def try_read_image(self, filepath): import base64 def is_image_file(filepath): # 判断文件是否为图片 valid_image_extensions = [".jpg", ".jpeg", ".png", ".bmp", ".gif", ".tiff"] file_extension = os.path.splitext(filepath)[1].lower() return file_extension in valid_image_extensions def read_image_as_bytes(filepath): # 读取图片文件并返回比特流 with open(filepath, "rb") as f: image_bytes = f.read() return image_bytes if is_image_file(filepath): logging.info(f"读取图片文件: {filepath}") image_bytes = read_image_as_bytes(filepath) base64_encoded_image = base64.b64encode(image_bytes).decode() self.image_bytes = base64_encoded_image self.image_path = filepath else: self.image_bytes = None self.image_path = None def prepare_inputs(self, real_inputs, use_websearch, files, reply_language, chatbot): fake_inputs = real_inputs display_append = "" limited_context = False return limited_context, fake_inputs, display_append, real_inputs, chatbot def handle_file_upload(self, files, chatbot): """if the model accepts multi modal input, implement this function""" if files: for file in files: if file.name: logging.info(f"尝试读取图像: {file.name}") self.try_read_image(file.name) if self.image_path is not None: chatbot = chatbot + [((self.image_path,), None)] if self.image_bytes is not None: logging.info("使用图片作为输入") conv_id = str(uuid.uuid4()) data = { "user_id": self.api_key, "session_id": self.session_id, "uuid": conv_id, "data_type": "imgbase64", "data": self.image_bytes } response = requests.post(self.url, json=data) response = json.loads(response.text) logging.info(f"图片回复: {response['data']}") return None, chatbot, None def get_answer_at_once(self): question = self.history[-1]["content"] conv_id = str(uuid.uuid4()) data = { "user_id": self.api_key, "session_id": self.session_id, "uuid": conv_id, "data_type": "text", "data": question } response = requests.post(self.url, json=data) response = json.loads(response.text) return response["data"], len(response["data"]) def get_model( model_name, lora_model_path=None, access_key=None, temperature=None, top_p=None, system_prompt=None, ) -> BaseLLMModel: msg = f"模型设置为了: {model_name}" model_type = ModelType.get_type(model_name) lora_selector_visibility = False lora_choices = [] dont_change_lora_selector = False if model_type != ModelType.OpenAI: config.local_embedding = True # del current_model.model model = None try: if model_type == ModelType.OpenAI: logging.info(f"正在加载OpenAI模型: {model_name}") model = OpenAIClient( model_name=model_name, api_key=access_key, system_prompt=system_prompt, temperature=temperature, top_p=top_p, ) elif model_type == ModelType.ChatGLM: logging.info(f"正在加载ChatGLM模型: {model_name}") model = ChatGLM_Client(model_name) elif model_type == ModelType.LLaMA and lora_model_path == "": msg = f"现在请为 {model_name} 选择LoRA模型" logging.info(msg) lora_selector_visibility = True if os.path.isdir("lora"): lora_choices = get_file_names( "lora", plain=True, filetypes=[""]) lora_choices = ["No LoRA"] + lora_choices elif model_type == ModelType.LLaMA and lora_model_path != "": logging.info(f"正在加载LLaMA模型: {model_name} + {lora_model_path}") dont_change_lora_selector = True if lora_model_path == "No LoRA": lora_model_path = None msg += " + No LoRA" else: msg += f" + {lora_model_path}" model = LLaMA_Client(model_name, lora_model_path) elif model_type == ModelType.XMBot: model = XMBot_Client(api_key=access_key) elif model_type == ModelType.Unknown: raise ValueError(f"未知模型: {model_name}") logging.info(msg) except Exception as e: logging.error(e) msg = f"{STANDARD_ERROR_MSG}: {e}" if dont_change_lora_selector: return model, msg else: return model, msg, gr.Dropdown.update(choices=lora_choices, visible=lora_selector_visibility) if __name__ == "__main__": with open("config.json", "r") as f: openai_api_key = cjson.load(f)["openai_api_key"] # set logging level to debug logging.basicConfig(level=logging.DEBUG) # client = ModelManager(model_name="gpt-3.5-turbo", access_key=openai_api_key) client = get_model(model_name="chatglm-6b-int4") chatbot = [] stream = False # 测试账单功能 logging.info(colorama.Back.GREEN + "测试账单功能" + colorama.Back.RESET) logging.info(client.billing_info()) # 测试问答 logging.info(colorama.Back.GREEN + "测试问答" + colorama.Back.RESET) question = "巴黎是中国的首都吗?" for i in client.predict(inputs=question, chatbot=chatbot, stream=stream): logging.info(i) logging.info(f"测试问答后history : {client.history}") # 测试记忆力 logging.info(colorama.Back.GREEN + "测试记忆力" + colorama.Back.RESET) question = "我刚刚问了你什么问题?" for i in client.predict(inputs=question, chatbot=chatbot, stream=stream): logging.info(i) logging.info(f"测试记忆力后history : {client.history}") # 测试重试功能 logging.info(colorama.Back.GREEN + "测试重试功能" + colorama.Back.RESET) for i in client.retry(chatbot=chatbot, stream=stream): logging.info(i) logging.info(f"重试后history : {client.history}") # # 测试总结功能 # print(colorama.Back.GREEN + "测试总结功能" + colorama.Back.RESET) # chatbot, msg = client.reduce_token_size(chatbot=chatbot) # print(chatbot, msg) # print(f"总结后history: {client.history}")