JohnTan38 commited on
Commit
051b0e4
1 Parent(s): 17b9140

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -16
app.py CHANGED
@@ -1,20 +1,16 @@
1
- import streamlit as st
2
- from transformers import pipeline
3
  from PIL import Image
 
4
 
5
- pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
 
6
 
7
- st.title("Hot Dog? Or Not?")
 
8
 
9
- file_name = st.file_uploader("Upload a hot dog candidate image")
10
-
11
- if file_name is not None:
12
- col1, col2 = st.columns(2)
13
-
14
- image = Image.open(file_name)
15
- col1.image(image, use_column_width=True)
16
- predictions = pipeline(image)
17
-
18
- col2.header("Probabilities")
19
- for p in predictions:
20
- col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")
 
1
+ from transformers import ViTImageProcessor, ViTForImageClassification
 
2
  from PIL import Image
3
+ import requests
4
 
5
+ url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
6
+ image = Image.open(requests.get(url, stream=True).raw)
7
 
8
+ processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224')
9
+ model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224')
10
 
11
+ inputs = processor(images=image, return_tensors="pt")
12
+ outputs = model(**inputs)
13
+ logits = outputs.logits
14
+ # model predicts one of the 1000 ImageNet classes
15
+ predicted_class_idx = logits.argmax(-1).item()
16
+ print("Predicted class:", model.config.id2label[predicted_class_idx])