File size: 15,525 Bytes
e8a20da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import streamlit as st
import numpy as np
import pandas as pd
import json
import altair as alt
from pathlib import Path
import requests


class Dashboard:
    class Model:
        pageTitle = "Dashboard"

        wordsTitle = "Words"

        inferenceTimeTitle = "Inference Time"

        documentsTitle = "Documents"

        dailyInferenceTitle = "Top Daily Inference"

        accuracyTitle = "Mean Accuracy"

        titleModelEval = "## Evaluation Accuracy"
        titleInferencePerformance = "## Inference Performance"
        titleDatasetInfo = "## Dataset Info"
        titleDataAnnotation = "## Data Annotation"
        titleTrainingPerformance = "## Training Performance"
        titleEvaluationPerformance = "## Evaluation Performance"

        status_file = "docs/status.json"
        annotation_files_dir = "docs/json"

    def view(self, model):
        # st.title(model.pageTitle)

        api_url = "https://katanaml-org-sparrow-ml.hf.space/api-inference/v1/sparrow-ml/statistics"
        json_data_inference = []
        response = requests.get(api_url)
        if response.status_code == 200:
            json_data_inference = response.json()
        else:
            print(f"Error: Unable to fetch data from the API (status code {response.status_code})")

        api_url_t = "https://katanaml-org-sparrow-ml.hf.space/api-training/v1/sparrow-ml/statistics/training"
        json_data_training = []
        response_t = requests.get(api_url_t)
        if response_t.status_code == 200:
            json_data_training = response_t.json()
        else:
            print(f"Error: Unable to fetch data from the API (status code {response_t.status_code})")

        api_url_e = "https://katanaml-org-sparrow-ml.hf.space/api-training/v1/sparrow-ml/statistics/evaluate"
        json_data_evaluate = []
        response_e = requests.get(api_url_e)
        if response_e.status_code == 200:
            json_data_evaluate = response_e.json()
        else:
            print(f"Error: Unable to fetch data from the API (status code {response_e.status_code})")

        with st.container():
            col1, col2, col3, col4, col5 = st.columns(5)

            with col1:
                words_count = 0
                delta_words = 0

                if len(json_data_inference) > 3:
                    for i in range(0, len(json_data_inference)):
                        words_count = words_count + json_data_inference[i][1]

                    avg_word_count = words_count / len(json_data_inference)
                    avg_word_last = (json_data_inference[len(json_data_inference) - 1][1]
                                     + json_data_inference[len(json_data_inference) - 2][1] +
                                     json_data_inference[len(json_data_inference) - 3][1]) / 3

                    if avg_word_last >= avg_word_count:
                        delta_words = round(100 - ((avg_word_count * 100) / avg_word_last), 2)
                    else:
                        delta_words = round(100 - ((avg_word_last * 100) / avg_word_count), 2) * -1

                    words_count = words_count / 1000
                st.metric(label=model.wordsTitle, value=str(words_count) + 'K', delta=str(delta_words) + "%")

            with col2:
                docs_count = len(json_data_inference)
                delta_docs = 0

                if docs_count > 3:
                    inference_dates = []
                    for i in range(0, len(json_data_inference)):
                        inference_dates.append(json_data_inference[i][4].split(" ")[0])

                    inference_dates_unique = []
                    for item in inference_dates:
                        if item not in inference_dates_unique:
                            inference_dates_unique.append(item)

                    if len(inference_dates_unique) > 3:
                        inference_dates_dict = {}
                        for i, key in enumerate(inference_dates_unique):
                            inference_dates_dict[key] = [0]

                        for i in range(0, len(json_data_inference)):
                            inference_dates_dict[json_data_inference[i][4].split(" ")[0]][0] = \
                                inference_dates_dict[json_data_inference[i][4].split(" ")[0]][0] + 1

                        # calculate average for values from inference_dates_dict
                        avg_value = 0
                        for key, value in inference_dates_dict.items():
                            avg_value = avg_value + value[0]
                        avg_value = round(avg_value / len(inference_dates_dict), 2)

                        # calculate average for last 3 values from inference_dates_dict
                        avg_value_last = 0
                        for i in range(1, 4):
                            avg_value_last = avg_value_last + inference_dates_dict[inference_dates_unique[len(inference_dates_unique) - i]][0]
                        avg_value_last = round(avg_value_last / 3, 2)

                        if avg_value_last > avg_value:
                            delta_docs = round(100 - ((avg_value * 100) / avg_value_last), 2)
                        else:
                            delta_docs = round(100 - ((avg_value_last * 100) / avg_value), 2) * -1

                st.metric(label=model.documentsTitle, value=docs_count, delta=str(delta_docs) + "%")

            with col3:
                inference_dates = []
                for i in range(0, len(json_data_inference)):
                    inference_dates.append(json_data_inference[i][4].split(" ")[0])

                inference_dates_unique = []
                for item in inference_dates:
                    if item not in inference_dates_unique:
                        inference_dates_unique.append(item)

                inference_dates_dict = {}
                for i, key in enumerate(inference_dates_unique):
                    inference_dates_dict[key] = [0]

                for i in range(0, len(json_data_inference)):
                    inference_dates_dict[json_data_inference[i][4].split(" ")[0]][0] = \
                        inference_dates_dict[json_data_inference[i][4].split(" ")[0]][0] + 1

                # loop through the dictionary and find the max value
                max_value = 0
                for key, value in inference_dates_dict.items():
                    if value[0] > max_value:
                        max_value = value[0]

                # calculate average for values from inference_dates_dict
                avg_value = 0
                for key, value in inference_dates_dict.items():
                    avg_value = avg_value + value[0]
                avg_value = round(avg_value / len(inference_dates_dict), 2)

                avg_delta = round(100 - ((avg_value * 100) / max_value), 2)

                st.metric(label=model.dailyInferenceTitle, value=max_value, delta=str(avg_delta) + "%")

            with col4:
                inference_time_avg = 0

                # calculate inference time average
                for i in range(0, len(json_data_inference)):
                    inference_time_avg = inference_time_avg + json_data_inference[i][0]
                inference_time_avg = round(inference_time_avg / len(json_data_inference), 2)

                delta_time = 0
                if len(json_data_inference) > 3:
                    avg_time_last = (json_data_inference[len(json_data_inference) - 1][0] +
                                     json_data_inference[len(json_data_inference) - 2][0] +
                                     json_data_inference[len(json_data_inference) - 3][0]) / 3

                    if avg_time_last > inference_time_avg:
                        delta_time = round(100 - ((inference_time_avg * 100) / avg_time_last), 2)
                    else:
                        delta_time = round(100 - ((avg_time_last * 100) / inference_time_avg), 2) * -1

                st.metric(label=model.inferenceTimeTitle, value=str(inference_time_avg) + " s", delta=str(delta_time) + "%",
                          delta_color="inverse")

            with col5:
                models_unique = []
                models_dict = {}
                for i in range(0, len(json_data_evaluate)):
                    if json_data_evaluate[i][3] not in models_unique:
                        models_unique.append(json_data_evaluate[i][3])
                        models_dict[json_data_evaluate[i][3]] = json_data_evaluate[i][1]['mean_accuracy']

                avg_accuracy = 0
                for key, value in models_dict.items():
                    avg_accuracy = avg_accuracy + value
                avg_accuracy = round(avg_accuracy / len(models_dict), 2)

                if len(models_unique) > 3:
                    # calculate average accuracy for last 3 values
                    avg_accuracy_last = 0
                    for i in range(1, 4):
                        avg_accuracy_last = avg_accuracy_last + models_dict[models_unique[len(models_unique) - i]]
                    avg_accuracy_last = round(avg_accuracy_last / 3, 2)
                else:
                    avg_accuracy_last = avg_accuracy

                if avg_accuracy_last > avg_accuracy:
                    delta_accuracy = round(100 - ((avg_accuracy * 100) / avg_accuracy_last), 2)
                else:
                    delta_accuracy = round(100 - ((avg_accuracy_last * 100) / avg_accuracy), 2) * -1

                st.metric(label=model.accuracyTitle, value=avg_accuracy, delta=str(delta_accuracy) + "%",
                          delta_color="inverse")

            st.markdown("---")


        with st.container():
            col1, col2 = st.columns(2)

            with col1:
                st.write(model.titleInferencePerformance)

                models_dict = {}

                models = []
                for i in range(0, len(json_data_inference)):
                    models.append(json_data_inference[i][3])

                models_unique = []
                for item in models:
                    if item not in models_unique:
                        models_unique.append(item)

                for i, key in enumerate(models_unique):
                    models_dict[key] = []

                for i in range(0, len(json_data_inference)):
                    models_dict[json_data_inference[i][3]].append(round(json_data_inference[i][0]))

                data = pd.DataFrame(models_dict)
                st.line_chart(data)

            with col2:
                st.write(model.titleModelEval)

                models_unique = []
                models_dict = {}
                for i in range(0, len(json_data_evaluate)):
                    if json_data_evaluate[i][3] not in models_unique:
                        models_unique.append(json_data_evaluate[i][3])
                        models_dict[json_data_evaluate[i][3]] = json_data_evaluate[i][1]['accuracies']

                data = pd.DataFrame(models_dict)
                st.line_chart(data)

        st.markdown("---")

        with st.container():
            col1, col2, col3 = st.columns(3)

            with col1:
                with st.container():
                    st.write(model.titleDataAnnotation)

                    total, completed, in_progress = self.calculate_annotation_stats(model)

                    data = pd.DataFrame({"Status": ["Completed", "In Progress"], "Value": [completed, in_progress]})

                    # Create a horizontal bar chart
                    chart = alt.Chart(data).mark_bar().encode(
                        x='Value:Q',
                        y=alt.Y('Status:N', sort='-x'),
                        color=alt.Color('Status:N', legend=None)
                    )

                    st.altair_chart(chart)
            with col2:
                with st.container():
                    st.write(model.titleDatasetInfo)

                    api_url = "https://katanaml-org-sparrow-data.hf.space/api-dataset/v1/sparrow-data/dataset_info"

                    # Make the GET request
                    response = requests.get(api_url)

                    # Check if the request was successful (status code 200)
                    names = []
                    rows = []
                    if response.status_code == 200:
                        # Convert the response content to a JSON object
                        json_data = response.json()

                        for i in range(0, len(json_data['splits'])):
                            names.append(json_data['splits'][i]['name'])
                            rows.append(json_data['splits'][i]['number_of_rows'])
                    else:
                        print(f"Error: Unable to fetch data from the API (status code {response.status_code})")

                    data = pd.DataFrame({"Dataset": names, "Value": rows})

                    # Create a horizontal bar chart
                    chart = alt.Chart(data).mark_bar().encode(
                        x='Value:Q',
                        y=alt.Y('Dataset:N', sort='-x'),
                        color=alt.Color('Dataset:N', legend=None)
                    )

                    st.altair_chart(chart)
            with col3:
                with st.container():
                    st.write(model.titleTrainingPerformance)

                    models_dict = {}

                    for i in range(0, len(json_data_training)):
                        models_dict[i] = round(json_data_training[i][0])

                    data = pd.DataFrame({"Runs": models_dict.keys(), "Value": list(models_dict.values())})

                    # Create a horizontal bar chart
                    chart = alt.Chart(data).mark_bar().encode(
                        x='Value:Q',
                        y=alt.Y('Runs:N', sort='-x'),
                        color=alt.Color('Runs:N', legend=None)
                    )

                    st.altair_chart(chart)

        st.markdown("---")

        with st.container():
            st.write(model.titleEvaluationPerformance)

            runs_dict = {}

            for i in range(0, len(json_data_evaluate)):
                runs_dict[i] = round(json_data_evaluate[i][0])

            data = pd.DataFrame({"Runs": runs_dict.keys(), "Value": list(runs_dict.values())})

            # Create a horizontal bar chart
            chart = alt.Chart(data).mark_bar().encode(
                x='Value:Q',
                y=alt.Y('Runs:N', sort='-x'),
                color=alt.Color('Runs:N', legend=None)
            )

            st.altair_chart(chart)


    def calculate_annotation_stats(self, model):
        completed = 0
        in_progress = 0
        data_dir_path = Path(model.annotation_files_dir)

        for file_name in data_dir_path.glob("*.json"):
            with open(file_name, "r") as f:
                data = json.load(f)
                v = data['meta']['version']
                if v == 'v0.1':
                    in_progress += 1
                else:
                    completed += 1
        total = completed + in_progress

        status_json = {
            "annotations": [
                {
                    "completed": completed,
                    "in_progress": in_progress,
                    "total": total
                }
            ]
        }

        with open(model.status_file, "w") as f:
            json.dump(status_json, f, indent=2)

        return total, completed, in_progress