Spaces:
Runtime error
Runtime error
jonathanIckovich
commited on
Commit
·
6e22c6a
1
Parent(s):
db19107
fix 7
Browse files
app.py
CHANGED
@@ -1,16 +1,33 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
3 |
|
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
5 |
|
6 |
-
learn = load_learner('ImageDifferentiator.pkl')
|
7 |
-
|
8 |
-
labels = learn.dls.vocab
|
9 |
def predict(img):
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
14 |
|
15 |
-
iface = gr.Interface(
|
|
|
|
|
|
|
|
|
|
|
16 |
iface.launch(share=True)
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForImageClassification, AutoTokenizer
|
3 |
+
from PIL import Image
|
4 |
|
5 |
+
# Load Hugging Face model and tokenizer
|
6 |
+
model_name = 'ImageDifferentiator' # Replace with the specific model name
|
7 |
+
model = AutoModelForImageClassification.from_pretrained(model_name)
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
|
10 |
+
# Get class labels from the model configuration
|
11 |
+
labels = model.config.id2label
|
12 |
|
|
|
|
|
|
|
13 |
def predict(img):
|
14 |
+
# Tokenize and preprocess the image
|
15 |
+
inputs = tokenizer(img, return_tensors="pt")
|
16 |
+
|
17 |
+
# Make prediction using the Hugging Face model
|
18 |
+
outputs = model(**inputs)
|
19 |
+
logits = outputs.logits
|
20 |
+
|
21 |
+
# Get class probabilities
|
22 |
+
probs = torch.nn.functional.softmax(logits, dim=-1)[0].tolist()
|
23 |
+
|
24 |
+
# Create result dictionary
|
25 |
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
26 |
|
27 |
+
iface = gr.Interface(
|
28 |
+
fn=predict,
|
29 |
+
inputs=gr.inputs.Image(shape=(512, 512)),
|
30 |
+
outputs=gr.outputs.Label(num_top_classes=3)
|
31 |
+
)
|
32 |
+
|
33 |
iface.launch(share=True)
|