Jonny001 commited on
Commit
fac87df
·
verified ·
1 Parent(s): fceb09a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -25
app.py CHANGED
@@ -4,40 +4,45 @@ import torch
4
  from PIL import Image
5
  from transformers import AutoProcessor, AutoModelForCausalLM
6
 
7
-
8
-
9
  subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
10
 
11
  device = "cuda" if torch.cuda.is_available() else "cpu"
12
  florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
13
  florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
14
 
15
- def generate_caption(image):
16
  if not isinstance(image, Image.Image):
17
  image = Image.fromarray(image)
18
 
19
  inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
20
- generated_ids = florence_model.generate(
21
- input_ids=inputs["input_ids"],
22
- pixel_values=inputs["pixel_values"],
23
- max_new_tokens=1024,
24
- early_stopping=False,
25
- do_sample=False,
26
- num_beams=3,
27
- )
28
- generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
29
- parsed_answer = florence_processor.post_process_generation(
30
- generated_text,
31
- task="<MORE_DETAILED_CAPTION>",
32
- image_size=(image.width, image.height)
33
- )
34
- prompt = parsed_answer["<MORE_DETAILED_CAPTION>"]
35
- print("\n\nGeneration completed!:"+ prompt)
36
- return prompt
37
 
38
- io = gr.Interface(generate_caption,
39
- inputs=[gr.Image(label="Input Image")],
40
- outputs = [gr.Textbox(label="Output Prompt", lines=2, show_copy_button = True),
41
- ]
42
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  io.launch(debug=True)
 
4
  from PIL import Image
5
  from transformers import AutoProcessor, AutoModelForCausalLM
6
 
 
 
7
  subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
8
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
  florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
11
  florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
12
 
13
+ def generate_captions(image):
14
  if not isinstance(image, Image.Image):
15
  image = Image.fromarray(image)
16
 
17
  inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
+ captions = []
20
+ for i in range(3):
21
+ generated_ids = florence_model.generate(
22
+ input_ids=inputs["input_ids"],
23
+ pixel_values=inputs["pixel_values"],
24
+ max_new_tokens=1024,
25
+ early_stopping=False,
26
+ do_sample=True,
27
+ temperature=0.7 + i * 0.1,
28
+ num_beams=3
29
+ )
30
+ generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
31
+ parsed_answer = florence_processor.post_process_generation(
32
+ generated_text,
33
+ task="<MORE_DETAILED_CAPTION>",
34
+ image_size=(image.width, image.height)
35
+ )
36
+ prompt = parsed_answer["<MORE_DETAILED_CAPTION>"]
37
+ captions.append(prompt)
38
+ print(f"\n\nGeneration {i+1} completed!:" + prompt)
39
+
40
+ return "\n\n".join([f"Caption {i+1}: {caption}" for i, caption in enumerate(captions)])
41
+
42
+ io = gr.Interface(
43
+ generate_captions,
44
+ inputs=[gr.Image(label="Input Image")],
45
+ outputs=[gr.Textbox(label="Output Captions", lines=10, show_copy_button=True)]
46
+ )
47
+
48
  io.launch(debug=True)