File size: 1,656 Bytes
17e58be
4ae559b
 
17e58be
4ae559b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import gradio as gr
import random
import os

model = gr.load("models/black-forest-labs/FLUX.1-schnell")

def generate_image(text, seed, width, height, guidance_scale, num_inference_steps):
    if seed is not None:
        random.seed(seed)

    if text in [example[0] for example in examples]:
        print(f"Using example: {text}")

    result_image = model(text)
    
    print(f"Width: {width}, Height: {height}, Guidance Scale: {guidance_scale}, Inference Steps: {num_inference_steps}")
    
    return result_image

def randomize_parameters():
    seed = random.randint(0, 999999)
    width = random.randint(512, 2048)
    height = random.randint(512, 2048)
    guidance_scale = round(random.uniform(0.1, 20.0), 1)
    num_inference_steps = random.randint(1, 40)
    
    return seed, width, height, guidance_scale, num_inference_steps

interface = gr.Interface(
    fn=generate_image,
    inputs=[
        gr.Textbox(label="Type here your imagination:", placeholder="Type or click an example..."),
        gr.Slider(label="Seed", minimum=0, maximum=999999, step=1),
        gr.Slider(label="Width", minimum=512, maximum=2048, step=64, value=1024),
        gr.Slider(label="Height", minimum=512, maximum=2048, step=64, value=1024),
        gr.Slider(label="Guidance Scale", minimum=0.1, maximum=20.0, step=0.1, value=3.0),
        gr.Slider(label="Number of inference steps", minimum=1, maximum=40, step=1, value=28),
    ],
    outputs=gr.Image(label="Generated Image"),
    description="Sorry for the inconvenience. The model is currently running on the CPU, which might affect performance. We appreciate your understanding.",
)

interface.launch()