File size: 5,135 Bytes
0bc8459
 
 
 
19136f3
 
0bc8459
 
 
 
 
 
 
 
 
 
 
 
19136f3
 
0bc8459
 
 
 
 
 
 
19136f3
 
 
 
 
 
0bc8459
 
 
 
19136f3
 
 
 
 
 
 
0bc8459
 
19136f3
 
 
 
 
 
 
 
 
 
 
 
 
 
0bc8459
 
 
 
 
 
19136f3
0bc8459
 
19136f3
 
 
 
 
 
0bc8459
 
19136f3
 
 
 
 
 
 
 
 
0bc8459
19136f3
 
 
 
0bc8459
 
19136f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bc8459
 
19136f3
 
 
 
 
 
 
 
 
 
 
 
0bc8459
 
19136f3
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from typing import Any, List, Callable
import cv2
import insightface
import threading
import os
import logging

import roop.globals
import roop.processors.frame.core
from roop.core import update_status
from roop.face_analyser import get_one_face, get_many_faces
from roop.typing import Face, Frame
from roop.utilities import conditional_download, resolve_relative_path, is_image, is_video

FACE_SWAPPER = None
THREAD_LOCK = threading.Lock()
NAME = 'ROOP.FACE-SWAPPER'

# Configure logging
logging.basicConfig(level=logging.INFO)

def get_face_swapper() -> Any:
    global FACE_SWAPPER

    with THREAD_LOCK:
        if FACE_SWAPPER is None:
            model_path = resolve_relative_path('../models/inswapper_128.onnx')
            try:
                FACE_SWAPPER = insightface.model_zoo.get_model(model_path, providers=roop.globals.execution_providers)
                logging.info(f"Loaded face swapper model from {model_path}")
            except Exception as e:
                logging.error(f"Failed to load face swapper model: {e}")
                FACE_SWAPPER = None
    return FACE_SWAPPER

def pre_check() -> bool:
    download_directory_path = resolve_relative_path('../models')
    try:
        conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/inswapper_128.onnx'])
        logging.info("Pre-check completed successfully.")
        return True
    except Exception as e:
        logging.error(f"Pre-check failed: {e}")
        return False

def pre_start() -> bool:
    try:
        if not is_image(roop.globals.source_path):
            update_status('Select an image for source path.', NAME)
            return False
        elif not get_one_face(cv2.imread(roop.globals.source_path)):
            update_status('No face in source path detected.', NAME)
            return False
        if not is_image(roop.globals.target_path) and not is_video(roop.globals.target_path):
            update_status('Select an image or video for target path.', NAME)
            return False
        logging.info("Pre-start checks passed.")
        return True
    except Exception as e:
        logging.error(f"Pre-start check failed: {e}")
        return False

def post_process() -> None:
    global FACE_SWAPPER

    FACE_SWAPPER = None
    logging.info("Post-process cleanup done.")

def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame:
    try:
        result = get_face_swapper().get(temp_frame, target_face, source_face, paste_back=True)
        return result
    except Exception as e:
        logging.error(f"Error swapping face: {e}")
        return temp_frame  # Return the unmodified frame in case of error

def process_frame(source_face: Face, temp_frame: Frame) -> Frame:
    try:
        if roop.globals.many_faces:
            many_faces = get_many_faces(temp_frame)
            if many_faces:
                for target_face in many_faces:
                    temp_frame = swap_face(source_face, target_face, temp_frame)
        else:
            target_face = get_one_face(temp_frame)
            if target_face:
                temp_frame = swap_face(source_face, target_face, temp_frame)
        return temp_frame
    except Exception as e:
        logging.error(f"Error processing frame: {e}")
        return temp_frame  # Return the unmodified frame in case of error

def process_frames(source_path: str, temp_frame_paths: List[str], update: Callable[[], None]) -> None:
    try:
        source_face = get_one_face(cv2.imread(source_path))
        if source_face is None:
            raise ValueError("No face detected in source image.")
        
        for temp_frame_path in temp_frame_paths:
            temp_frame = cv2.imread(temp_frame_path)
            if temp_frame is None:
                raise ValueError(f"Failed to read frame from path: {temp_frame_path}")
            
            result = process_frame(source_face, temp_frame)
            cv2.imwrite(temp_frame_path, result)
            if update:
                update()
        logging.info("Frames processed successfully.")
    except Exception as e:
        logging.error(f"Error processing frames: {e}")

def process_image(source_path: str, target_path: str, output_path: str) -> None:
    try:
        source_face = get_one_face(cv2.imread(source_path))
        target_frame = cv2.imread(target_path)
        if source_face is None:
            raise ValueError("No face detected in source image.")
        if target_frame is None:
            raise ValueError("Failed to read target frame.")
        result = process_frame(source_face, target_frame)
        cv2.imwrite(output_path, result)
        logging.info(f"Image processed and saved to {output_path}.")
    except Exception as e:
        logging.error(f"Error processing image: {e}")

def process_video(source_path: str, temp_frame_paths: List[str]) -> None:
    try:
        roop.processors.frame.core.process_video(source_path, temp_frame_paths, process_frames)
        logging.info("Video processing completed.")
    except Exception as e:
        logging.error(f"Error processing video: {e}")