File size: 12,770 Bytes
0dfa3b6 6694498 0dfa3b6 6694498 0dfa3b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from speechbrain.pretrained import EncoderClassifier
import numpy as np
from scipy.spatial.distance import cosine
import librosa
import torchaudio
import gradio as gr
import noisereduce as nr
# Import WavLM components from Hugging Face
from transformers import WavLMForXVector, Wav2Vec2FeatureExtractor
# ---------------- Noise Reduction and Silence Removal Functions ----------------
def reduce_noise(waveform, sample_rate=16000):
"""
Apply a mild noise reduction to the waveform specialized for voice audio.
The parameters are chosen to minimize alteration to the original voice.
Parameters:
waveform (torch.Tensor): Audio tensor of shape (1, n_samples)
sample_rate (int): Sampling rate of the audio
Returns:
torch.Tensor: Denoised audio tensor of shape (1, n_samples)
"""
# Convert tensor to numpy array
waveform_np = waveform.squeeze(0).cpu().numpy()
# Perform noise reduction with conservative parameters.
reduced_noise = nr.reduce_noise(y=waveform_np, sr=sample_rate, prop_decrease=0.5)
return torch.from_numpy(reduced_noise).unsqueeze(0)
def remove_long_silence(waveform, sample_rate=16000, top_db=20, max_silence_length=1.0):
"""
Remove silence segments longer than max_silence_length seconds from the audio.
This function uses librosa.effects.split to detect non-silent intervals and
preserves at most max_silence_length seconds of silence between speech segments.
Parameters:
waveform (torch.Tensor): Audio tensor of shape (1, n_samples)
sample_rate (int): Sampling rate of the audio
top_db (int): The threshold (in decibels) below reference to consider as silence
max_silence_length (float): Maximum allowed silence duration in seconds
Returns:
torch.Tensor: Processed audio tensor with long silences removed
"""
# Convert tensor to numpy array
waveform_np = waveform.squeeze(0).cpu().numpy()
# Identify non-silent intervals
non_silent_intervals = librosa.effects.split(waveform_np, top_db=top_db)
if len(non_silent_intervals) == 0:
return waveform
output_segments = []
max_silence_samples = int(max_silence_length * sample_rate)
# Handle silence before the first non-silent interval
if non_silent_intervals[0][0] > 0:
output_segments.append(waveform_np[:min(non_silent_intervals[0][0], max_silence_samples)])
# Process each non-silent interval and the gap following it
for i, (start, end) in enumerate(non_silent_intervals):
output_segments.append(waveform_np[start:end])
if i < len(non_silent_intervals) - 1:
next_start = non_silent_intervals[i + 1][0]
gap = next_start - end
if gap > max_silence_samples:
output_segments.append(waveform_np[end:end + max_silence_samples])
else:
output_segments.append(waveform_np[end:next_start])
# Handle silence after the last non-silent interval
if non_silent_intervals[-1][1] < len(waveform_np):
gap = len(waveform_np) - non_silent_intervals[-1][1]
if gap > max_silence_samples:
output_segments.append(waveform_np[-max_silence_samples:])
else:
output_segments.append(waveform_np[non_silent_intervals[-1][1]:])
processed_waveform = np.concatenate(output_segments)
return torch.from_numpy(processed_waveform).unsqueeze(0)
# -----------------------------------------------------------------------------
class EnhancedECAPATDNN(nn.Module):
def __init__(self):
super().__init__()
# Primary pretrained model from SpeechBrain (ECAPA-TDNN, trained on VoxCeleb)
self.ecapa = EncoderClassifier.from_hparams(
source="speechbrain/spkrec-ecapa-voxceleb",
savedir="pretrained_models/spkrec-ecapa-voxceleb",
run_opts={"device": "cuda" if torch.cuda.is_available() else "cpu"}
)
# Secondary pretrained model: Microsoft WavLM for Speaker Verification
self.wavlm_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("microsoft/wavlm-base-sv")
self.wavlm = WavLMForXVector.from_pretrained("microsoft/wavlm-base-sv")
self.wavlm.to("cuda" if torch.cuda.is_available() else "cpu")
# Projection layer to map WavLM's embedding (now 512-dim) to 192-dim (to match ECAPA)
self.wavlm_proj = nn.Linear(512, 192)
# Enhanced network: deeper enhancement layers
# Increase dimensionality then reduce back to 192.
self.enhancement = nn.Sequential(
nn.Linear(192, 256),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(256, 192)
)
# Transformer encoder block (with batch_first=True)
self.transformer = nn.TransformerEncoder(
nn.TransformerEncoderLayer(d_model=192, nhead=4, dropout=0.3, batch_first=True),
num_layers=2
)
@torch.no_grad()
def forward(self, x):
"""
x: input waveform tensor of shape (1, T) on device.
"""
# Extract ECAPA embedding
emb_ecapa = self.ecapa.encode_batch(x)
# Prepare input for WavLM:
# x is a waveform tensor of shape (1, T)
waveform_np = x.squeeze(0).cpu().numpy() # shape (T,)
wavlm_inputs = self.wavlm_feature_extractor(waveform_np, sampling_rate=16000, return_tensors="pt")
wavlm_inputs = {k: v.to(x.device) for k, v in wavlm_inputs.items()}
wavlm_out = self.wavlm(**wavlm_inputs)
# Extract embeddings; expected shape (batch, 512)
emb_wavlm = wavlm_out.embeddings
# Project WavLM embedding to 192-dim
emb_wavlm_proj = self.wavlm_proj(emb_wavlm)
# Process ECAPA embedding:
if emb_ecapa.dim() > 2 and emb_ecapa.size(1) > 1:
emb_ecapa_proc = self.transformer(emb_ecapa)
emb_ecapa_proc = emb_ecapa_proc.mean(dim=1)
else:
emb_ecapa_proc = emb_ecapa
# Fuse the two embeddings by averaging
fused = (emb_ecapa_proc + emb_wavlm_proj) / 2
# Apply enhancement layers and normalize
enhanced = self.enhancement(fused)
output = F.normalize(enhanced, p=2, dim=-1)
return output
class ForensicSpeakerVerification:
def __init__(self):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {self.device}")
self.model = EnhancedECAPATDNN().to(self.device)
self.model.eval()
# Optimize only the enhancement and transformer layers if fine-tuning
trainable_params = list(self.model.enhancement.parameters()) + list(self.model.transformer.parameters())
self.optimizer = torch.optim.AdamW(trainable_params, lr=1e-4)
self.training_embeddings = []
def preprocess_audio(self, file_path, max_duration=10):
try:
waveform, sample_rate = torchaudio.load(file_path)
if waveform.shape[0] > 1:
waveform = torch.mean(waveform, dim=0, keepdim=True)
if sample_rate != 16000:
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
waveform = resampler(waveform)
max_length = int(16000 * max_duration)
if waveform.shape[1] > max_length:
waveform = waveform[:, :max_length]
waveform = waveform / (torch.max(torch.abs(waveform)) + 1e-8)
# Apply noise reduction
waveform = reduce_noise(waveform, sample_rate=16000)
# Remove silences longer than 1 second
waveform = remove_long_silence(waveform, sample_rate=16000)
return waveform.to(self.device)
except Exception as e:
raise ValueError(f"Error preprocessing audio: {str(e)}")
@torch.no_grad()
def extract_embedding(self, file_path, chunk_duration=3, overlap=0.5):
waveform = self.preprocess_audio(file_path)
sample_rate = 16000
chunk_size = int(chunk_duration * sample_rate)
hop_size = int(chunk_size * (1 - overlap))
embeddings = []
if waveform.shape[1] > chunk_size:
for start in range(0, waveform.shape[1] - chunk_size + 1, hop_size):
chunk = waveform[:, start:start+chunk_size]
emb = self.model(chunk)
embeddings.append(emb)
final_emb = torch.mean(torch.cat(embeddings, dim=0), dim=0, keepdim=True)
else:
final_emb = self.model(waveform)
return final_emb.cpu().numpy()
def verify_speaker(self, questioned_audio, suspect_audio, progress=gr.Progress()):
if not questioned_audio or not suspect_audio:
return "⚠️ Please provide both audio samples"
try:
progress(0.2, desc="Processing questioned audio...")
questioned_emb = self.extract_embedding(questioned_audio)
progress(0.4, desc="Processing suspect audio...")
suspect_emb = self.extract_embedding(suspect_audio)
progress(0.6, desc="Computing similarity...")
score = 1 - cosine(questioned_emb.flatten(), suspect_emb.flatten())
# Convert similarity score to probability (percentage)
probability = score * 100
# Create heat bar HTML
heat_bar = f"""
<div style="width:100%; height:30px; position:relative; margin-bottom:10px;">
<div style="width:100%; height:20px; background: linear-gradient(to right, #FF0000, #FFFF00, #00FF00); border-radius:10px;"></div>
<div style="position:absolute; left:{probability}%; top:0; transform:translateX(-50%);">
<div style="width:0; height:0; border-left:8px solid transparent; border-right:8px solid transparent; border-bottom:10px solid black;"></div>
<div style="width:2px; height:20px; background-color:black; margin-left:7px;"></div>
</div>
</div>
"""
# Determine color based on probability
if probability <= 50:
color = f"rgb(255, {int(255 * (probability / 50))}, 0)"
else:
color = f"rgb({int(255 * (2 - probability / 50))}, 255, 0)"
# Determine verdict text
if score >= 0.6:
verdict_text = '✅ Same Speaker'
else:
verdict_text = '⚠️ Different Speakers'
result = f"""
<div style='font-family: Arial, sans-serif; font-size: 16px; background-color: #f5f5f5; padding: 20px; border-radius: 10px; box-shadow: 0 4px 6px rgba(0,0,0,0.1);'>
<h2 style='color: #333; margin-bottom: 20px;'>Speaker Verification Analysis Results</h2>
<p style='margin-bottom: 10px; color: black;'>Similarity Score: <strong style='color:{color};'>{probability:.1f}%</strong></p>
{heat_bar}
<p style='margin-top: 20px; font-size: 18px; font-weight: bold; color: #333;'>{verdict_text}</p>
</div>
"""
progress(1.0)
return result
except Exception as e:
return f"❌ Error during verification: {str(e)}"
# Initialize the system
speaker_verification = ForensicSpeakerVerification()
# GRADIO
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# 🎙️ Forensic Speaker Verification System
Upload or record two audio samples to compare and verify if they belong to the same speaker.
"""
)
with gr.Column():
questioned_audio = gr.Audio(
sources=["upload", "microphone"],
type="filepath",
label="Questioned Audio Sample"
)
suspect_audio = gr.Audio(
sources=["upload", "microphone"],
type="filepath",
label="Suspect Audio Sample"
)
test_button = gr.Button("🔍 Compare Speakers", variant="primary")
test_output = gr.HTML()
test_button.click(
fn=speaker_verification.verify_speaker,
inputs=[questioned_audio, suspect_audio],
outputs=test_output
)
gr.Markdown(
"""
### How it works
1. Upload or record the questioned audio sample.
2. Upload or record the suspect audio sample.
3. Click "Compare Speakers" to analyze the similarity between the two samples.
4. View the results, including the similarity score and verdict.
Note: For best results, use clear audio samples with minimal background noise.
"""
)
# Launch the interface
demo.launch(share=True) |