import torch import torch.nn as nn import torch.nn.functional as F from speechbrain.pretrained import EncoderClassifier import numpy as np from scipy.spatial.distance import cosine import librosa import torchaudio import gradio as gr import noisereduce as nr # Import WavLM components from Hugging Face from transformers import WavLMForXVector, Wav2Vec2FeatureExtractor # ---------------- Noise Reduction and Silence Removal Functions ---------------- def reduce_noise(waveform, sample_rate=16000): """ Apply a mild noise reduction to the waveform specialized for voice audio. The parameters are chosen to minimize alteration to the original voice. Parameters: waveform (torch.Tensor): Audio tensor of shape (1, n_samples) sample_rate (int): Sampling rate of the audio Returns: torch.Tensor: Denoised audio tensor of shape (1, n_samples) """ # Convert tensor to numpy array waveform_np = waveform.squeeze(0).cpu().numpy() # Perform noise reduction with conservative parameters. reduced_noise = nr.reduce_noise(y=waveform_np, sr=sample_rate, prop_decrease=0.5) return torch.from_numpy(reduced_noise).unsqueeze(0) def remove_long_silence(waveform, sample_rate=16000, top_db=20, max_silence_length=1.0): """ Remove silence segments longer than max_silence_length seconds from the audio. This function uses librosa.effects.split to detect non-silent intervals and preserves at most max_silence_length seconds of silence between speech segments. Parameters: waveform (torch.Tensor): Audio tensor of shape (1, n_samples) sample_rate (int): Sampling rate of the audio top_db (int): The threshold (in decibels) below reference to consider as silence max_silence_length (float): Maximum allowed silence duration in seconds Returns: torch.Tensor: Processed audio tensor with long silences removed """ # Convert tensor to numpy array waveform_np = waveform.squeeze(0).cpu().numpy() # Identify non-silent intervals non_silent_intervals = librosa.effects.split(waveform_np, top_db=top_db) if len(non_silent_intervals) == 0: return waveform output_segments = [] max_silence_samples = int(max_silence_length * sample_rate) # Handle silence before the first non-silent interval if non_silent_intervals[0][0] > 0: output_segments.append(waveform_np[:min(non_silent_intervals[0][0], max_silence_samples)]) # Process each non-silent interval and the gap following it for i, (start, end) in enumerate(non_silent_intervals): output_segments.append(waveform_np[start:end]) if i < len(non_silent_intervals) - 1: next_start = non_silent_intervals[i + 1][0] gap = next_start - end if gap > max_silence_samples: output_segments.append(waveform_np[end:end + max_silence_samples]) else: output_segments.append(waveform_np[end:next_start]) # Handle silence after the last non-silent interval if non_silent_intervals[-1][1] < len(waveform_np): gap = len(waveform_np) - non_silent_intervals[-1][1] if gap > max_silence_samples: output_segments.append(waveform_np[-max_silence_samples:]) else: output_segments.append(waveform_np[non_silent_intervals[-1][1]:]) processed_waveform = np.concatenate(output_segments) return torch.from_numpy(processed_waveform).unsqueeze(0) # ----------------------------------------------------------------------------- class EnhancedECAPATDNN(nn.Module): def __init__(self): super().__init__() # Primary pretrained model from SpeechBrain (ECAPA-TDNN, trained on VoxCeleb) self.ecapa = EncoderClassifier.from_hparams( source="speechbrain/spkrec-ecapa-voxceleb", savedir="pretrained_models/spkrec-ecapa-voxceleb", run_opts={"device": "cuda" if torch.cuda.is_available() else "cpu"} ) # Secondary pretrained model: Microsoft WavLM for Speaker Verification self.wavlm_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("microsoft/wavlm-base-sv") self.wavlm = WavLMForXVector.from_pretrained("microsoft/wavlm-base-sv") self.wavlm.to("cuda" if torch.cuda.is_available() else "cpu") # Projection layer to map WavLM's embedding (now 512-dim) to 192-dim (to match ECAPA) self.wavlm_proj = nn.Linear(512, 192) # Enhanced network: deeper enhancement layers # Increase dimensionality then reduce back to 192. self.enhancement = nn.Sequential( nn.Linear(192, 256), nn.ReLU(), nn.Dropout(0.3), nn.Linear(256, 192) ) # Transformer encoder block (with batch_first=True) self.transformer = nn.TransformerEncoder( nn.TransformerEncoderLayer(d_model=192, nhead=4, dropout=0.3, batch_first=True), num_layers=2 ) @torch.no_grad() def forward(self, x): """ x: input waveform tensor of shape (1, T) on device. """ # Extract ECAPA embedding emb_ecapa = self.ecapa.encode_batch(x) # Prepare input for WavLM: # x is a waveform tensor of shape (1, T) waveform_np = x.squeeze(0).cpu().numpy() # shape (T,) wavlm_inputs = self.wavlm_feature_extractor(waveform_np, sampling_rate=16000, return_tensors="pt") wavlm_inputs = {k: v.to(x.device) for k, v in wavlm_inputs.items()} wavlm_out = self.wavlm(**wavlm_inputs) # Extract embeddings; expected shape (batch, 512) emb_wavlm = wavlm_out.embeddings # Project WavLM embedding to 192-dim emb_wavlm_proj = self.wavlm_proj(emb_wavlm) # Process ECAPA embedding: if emb_ecapa.dim() > 2 and emb_ecapa.size(1) > 1: emb_ecapa_proc = self.transformer(emb_ecapa) emb_ecapa_proc = emb_ecapa_proc.mean(dim=1) else: emb_ecapa_proc = emb_ecapa # Fuse the two embeddings by averaging fused = (emb_ecapa_proc + emb_wavlm_proj) / 2 # Apply enhancement layers and normalize enhanced = self.enhancement(fused) output = F.normalize(enhanced, p=2, dim=-1) return output class ForensicSpeakerVerification: def __init__(self): self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {self.device}") self.model = EnhancedECAPATDNN().to(self.device) self.model.eval() # Optimize only the enhancement and transformer layers if fine-tuning trainable_params = list(self.model.enhancement.parameters()) + list(self.model.transformer.parameters()) self.optimizer = torch.optim.AdamW(trainable_params, lr=1e-4) self.training_embeddings = [] def preprocess_audio(self, file_path, max_duration=10): try: waveform, sample_rate = torchaudio.load(file_path) if waveform.shape[0] > 1: waveform = torch.mean(waveform, dim=0, keepdim=True) if sample_rate != 16000: resampler = torchaudio.transforms.Resample(sample_rate, 16000) waveform = resampler(waveform) max_length = int(16000 * max_duration) if waveform.shape[1] > max_length: waveform = waveform[:, :max_length] waveform = waveform / (torch.max(torch.abs(waveform)) + 1e-8) # Apply noise reduction waveform = reduce_noise(waveform, sample_rate=16000) # Remove silences longer than 1 second waveform = remove_long_silence(waveform, sample_rate=16000) return waveform.to(self.device) except Exception as e: raise ValueError(f"Error preprocessing audio: {str(e)}") @torch.no_grad() def extract_embedding(self, file_path, chunk_duration=3, overlap=0.5): waveform = self.preprocess_audio(file_path) sample_rate = 16000 chunk_size = int(chunk_duration * sample_rate) hop_size = int(chunk_size * (1 - overlap)) embeddings = [] if waveform.shape[1] > chunk_size: for start in range(0, waveform.shape[1] - chunk_size + 1, hop_size): chunk = waveform[:, start:start+chunk_size] emb = self.model(chunk) embeddings.append(emb) final_emb = torch.mean(torch.cat(embeddings, dim=0), dim=0, keepdim=True) else: final_emb = self.model(waveform) return final_emb.cpu().numpy() def verify_speaker(self, questioned_audio, suspect_audio, progress=gr.Progress()): if not questioned_audio or not suspect_audio: return "⚠️ Please provide both audio samples" try: progress(0.2, desc="Processing questioned audio...") questioned_emb = self.extract_embedding(questioned_audio) progress(0.4, desc="Processing suspect audio...") suspect_emb = self.extract_embedding(suspect_audio) progress(0.6, desc="Computing similarity...") score = 1 - cosine(questioned_emb.flatten(), suspect_emb.flatten()) # Convert similarity score to probability (percentage) probability = score * 100 # Create heat bar HTML heat_bar = f"""
""" # Determine color based on probability if probability <= 50: color = f"rgb(255, {int(255 * (probability / 50))}, 0)" else: color = f"rgb({int(255 * (2 - probability / 50))}, 255, 0)" # Determine verdict text if score >= 0.6: verdict_text = '✅ Same Speaker' else: verdict_text = '⚠️ Different Speakers' result = f"""

Speaker Verification Analysis Results

Similarity Score: {probability:.1f}%

{heat_bar}

{verdict_text}

""" progress(1.0) return result except Exception as e: return f"❌ Error during verification: {str(e)}" # Initialize the system speaker_verification = ForensicSpeakerVerification() # GRADIO with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown( """ # 🎙️ Forensic Speaker Verification System Upload or record two audio samples to compare and verify if they belong to the same speaker. """ ) with gr.Column(): questioned_audio = gr.Audio( sources=["upload", "microphone"], type="filepath", label="Questioned Audio Sample" ) suspect_audio = gr.Audio( sources=["upload", "microphone"], type="filepath", label="Suspect Audio Sample" ) test_button = gr.Button("🔍 Compare Speakers", variant="primary") test_output = gr.HTML() test_button.click( fn=speaker_verification.verify_speaker, inputs=[questioned_audio, suspect_audio], outputs=test_output ) gr.Markdown( """ ### How it works 1. Upload or record the questioned audio sample. 2. Upload or record the suspect audio sample. 3. Click "Compare Speakers" to analyze the similarity between the two samples. 4. View the results, including the similarity score and verdict. Note: For best results, use clear audio samples with minimal background noise. """ ) # Launch the interface demo.launch(share=True)