Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoImageProcessor, AutoModelForObjectDetection | |
from PIL import Image, ImageDraw | |
import torch | |
image_processor = AutoImageProcessor.from_pretrained('hustvl/yolos-small') | |
model = AutoModelForObjectDetection.from_pretrained('hustvl/yolos-small') | |
def detect(image): | |
inputs = image_processor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
# convert outputs to COCO API | |
target_sizes = torch.tensor([image.size[::-1]]) | |
results = image_processor.post_process_object_detection(outputs, | |
threshold=0.9, | |
target_sizes=target_sizes)[0] | |
# Bounding box in COCO format: | |
# [x_min, y_min, width, height] | |
# model predicts bounding boxes and corresponding COCO classes | |
#logits = outputs.logits | |
#bboxes = outputs.pred_boxes | |
draw = ImageDraw.Draw(image) | |
# label and the count | |
counts = {} | |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
box = [round(i, 2) for i in box.tolist()] | |
label_name = model.config.id2label[label.item()] | |
if label_name not in counts: | |
counts[label_name] = 0 | |
counts[label_name] += 1 | |
x, y, w, h = tuple(box) | |
draw.rectangle((x, y, x+w, y+h), outline="red", width=1) | |
draw.text((x, y), label_name, fill="white") | |
return results, image | |
demo = gr.Interface( | |
fn=detect, | |
inputs=[gr.inputs.Image(label="Input image", type="pil")], | |
outputs=["text", "image"], #, gr.Label(num_top_classes=10)], | |
title="Object Counts in Image" | |
) | |
demo.launch() |