JosephTK commited on
Commit
1c3fab1
·
1 Parent(s): f54f0e1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -7
app.py CHANGED
@@ -10,16 +10,14 @@ def detect(image1, image2):
10
  processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")
11
  model = ResNetForImageClassification.from_pretrained("microsoft/resnet-50")
12
 
13
- inputs = processor(image, return_tensors="pt")
14
 
15
  with torch.no_grad():
16
  logits = model(**inputs).logits
17
 
18
  # model predicts one of the 1000 ImageNet classes
19
  predicted_label = logits.argmax(-1).item()
20
- print(model.config.id2label[predicted_label])
21
-
22
-
23
 
24
  ### Image 2, object detections ###
25
  from PIL import Image
@@ -28,14 +26,14 @@ def detect(image1, image2):
28
  feature_extractor = YolosFeatureExtractor.from_pretrained('hustvl/yolos-small')
29
  model = YolosForObjectDetection.from_pretrained('hustvl/yolos-small')
30
 
31
- inputs = feature_extractor(images=image, return_tensors="pt")
32
  outputs = model(**inputs)
33
 
34
  # model predicts bounding boxes and corresponding COCO classes
35
  logits = outputs.logits
36
  bboxes = outputs.pred_boxes
37
 
38
- return model.config.id2label[predicted_label], bboxes
39
 
40
 
41
 
@@ -43,7 +41,7 @@ def detect(image1, image2):
43
  demo = gr.Interface(
44
  fn=detect,
45
  inputs=[gr.inputs.Image(label="Object to detect"), gr.inputs.Image(label="Image to detect object in")],
46
- outputs=["prediction", "bounding boxes"],
47
  title="Object Counts in Image"
48
  )
49
 
 
10
  processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")
11
  model = ResNetForImageClassification.from_pretrained("microsoft/resnet-50")
12
 
13
+ inputs = processor(image1, return_tensors="pt")
14
 
15
  with torch.no_grad():
16
  logits = model(**inputs).logits
17
 
18
  # model predicts one of the 1000 ImageNet classes
19
  predicted_label = logits.argmax(-1).item()
20
+ object_label = model.config.id2label[predicted_label]
 
 
21
 
22
  ### Image 2, object detections ###
23
  from PIL import Image
 
26
  feature_extractor = YolosFeatureExtractor.from_pretrained('hustvl/yolos-small')
27
  model = YolosForObjectDetection.from_pretrained('hustvl/yolos-small')
28
 
29
+ inputs = feature_extractor(images=image2, return_tensors="pt")
30
  outputs = model(**inputs)
31
 
32
  # model predicts bounding boxes and corresponding COCO classes
33
  logits = outputs.logits
34
  bboxes = outputs.pred_boxes
35
 
36
+ return object_label, bboxes
37
 
38
 
39
 
 
41
  demo = gr.Interface(
42
  fn=detect,
43
  inputs=[gr.inputs.Image(label="Object to detect"), gr.inputs.Image(label="Image to detect object in")],
44
+ outputs=["text", "text"],
45
  title="Object Counts in Image"
46
  )
47