Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoImageProcessor, ResNetForImageClassification, YolosFeatureExtractor, YolosForObjectDetection
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
def detect(image1, image2):
|
9 |
+
### Image 1, the object ###
|
10 |
+
processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")
|
11 |
+
model = ResNetForImageClassification.from_pretrained("microsoft/resnet-50")
|
12 |
+
|
13 |
+
inputs = processor(image, return_tensors="pt")
|
14 |
+
|
15 |
+
with torch.no_grad():
|
16 |
+
logits = model(**inputs).logits
|
17 |
+
|
18 |
+
# model predicts one of the 1000 ImageNet classes
|
19 |
+
predicted_label = logits.argmax(-1).item()
|
20 |
+
print(model.config.id2label[predicted_label])
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
### Image 2, object detections ###
|
25 |
+
from PIL import Image
|
26 |
+
import requests
|
27 |
+
|
28 |
+
feature_extractor = YolosFeatureExtractor.from_pretrained('hustvl/yolos-small')
|
29 |
+
model = YolosForObjectDetection.from_pretrained('hustvl/yolos-small')
|
30 |
+
|
31 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
32 |
+
outputs = model(**inputs)
|
33 |
+
|
34 |
+
# model predicts bounding boxes and corresponding COCO classes
|
35 |
+
logits = outputs.logits
|
36 |
+
bboxes = outputs.pred_boxes
|
37 |
+
|
38 |
+
return model.config.id2label[predicted_label], bboxes
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
demo = gr.Interface(
|
44 |
+
fn=detect,
|
45 |
+
inputs=[gr.inputs.Image(label="Object to detect"), gr.inputs.Image(label="Image to detect object in")],
|
46 |
+
outputs=["prediction", "bounding boxes"],
|
47 |
+
title="Object Counts in Image"
|
48 |
+
)
|
49 |
+
|
50 |
+
demo.launch()
|