Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,33 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
3 |
import torch
|
4 |
|
5 |
-
|
6 |
-
model =
|
7 |
|
8 |
def detect(image):
|
9 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
10 |
outputs = model(**inputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# model predicts bounding boxes and corresponding COCO classes
|
13 |
-
logits = outputs.logits
|
14 |
-
bboxes = outputs.pred_boxes
|
15 |
|
16 |
-
|
|
|
17 |
|
|
|
18 |
|
19 |
demo = gr.Interface(
|
20 |
fn=detect,
|
21 |
inputs=[gr.inputs.Image(label="Input image")],
|
22 |
-
outputs=["text"],
|
23 |
title="Object Counts in Image"
|
24 |
)
|
25 |
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
3 |
import torch
|
4 |
|
5 |
+
image_processor = AutoImageProcessor.from_pretrained('hustvl/yolos-small')
|
6 |
+
model = AutoModelForObjectDetection.from_pretrained('hustvl/yolos-small')
|
7 |
|
8 |
def detect(image):
|
9 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
10 |
outputs = model(**inputs)
|
11 |
+
|
12 |
+
# convert outputs to COCO API
|
13 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
14 |
+
results = image_processor.post_process_object_detection(outputs,
|
15 |
+
threshold=0.9,
|
16 |
+
target_sizes=target_sizes)[0]
|
17 |
|
18 |
# model predicts bounding boxes and corresponding COCO classes
|
19 |
+
#logits = outputs.logits
|
20 |
+
#bboxes = outputs.pred_boxes
|
21 |
|
22 |
+
# label and the count
|
23 |
+
counts = {}
|
24 |
|
25 |
+
return results
|
26 |
|
27 |
demo = gr.Interface(
|
28 |
fn=detect,
|
29 |
inputs=[gr.inputs.Image(label="Input image")],
|
30 |
+
outputs=["text"]#, gr.Label(num_top_classes=10)],
|
31 |
title="Object Counts in Image"
|
32 |
)
|
33 |
|